1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldi70 [24.7K]
3 years ago
12

Ignoring the electron spin what is the largest possible energy difference, if the magnetic field is 2.02 tesla?

Physics
1 answer:
Nonamiya [84]3 years ago
5 0

Complete Question:

When specially prepared Hydrogen atoms with their electrons in the 6f state are placed into a strong uniform magnetic field, the degenerate energy levels split into several levels. This is the so called normal Zeeman effect.

Ignoring the electron spin what is the largest possible energy difference, if the magnetic field is 2.02 Tesla?

Answer:

ΔE = 1.224 * 10⁻²² J

Explanation:

In the 6f state, the orbital quantum number, L = 3

The magnetic quantum number, m_{L} = -3, -2, -1, 0, 1, 2, 3

The change in energy due to Zeeman effect is given by:

\triangle E = m_{L} \mu_{B} B

Magnetic field B = 2.02 T

Bohr magnetron, \mu_{B} = 9.274 * 10^{-24} J/T

\triangle E = 6 * 9.274 * 10^{-24} * 2.2\\

ΔE = 1.224 * 10⁻²² J

You might be interested in
Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 mm away horizontal
Harrizon [31]

Answer:

a. 8.96 m/s b. 1.81 m

Explanation:

Here is the complete question.

a) A long jumper leaves the ground at 45° above the horizontal and lands 8.2 m away.

What is her "takeoff" speed  v 0 ?

b) Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 m away horizontally and 2.5 m, vertically below.  

If she long jumps from the edge of the left bank at 45° with the speed calculated in part a), how long, or short, of the opposite bank will she land?

a. Since she lands 8.2 m away and leaves at an angle of 45 above the horizontal, this is a case of projectile motion. We calculate the takeoff speed v₀ from R = v₀²sin2θ/g. where R = range = 8.2 m.

So, v₀ = √gR/sin2θ = √9.8 × 8.2/sin(2×45) = √80.36/sin90 = √80.36 = 8.96 m/s.

b. We use R = v₀²sin2θ/g to calculate how long or short of the opposite bank she will land. With v₀ = 8.96 m/s and θ = 45

R = 8.96²sin(2 × 45)/9.8 = 80.2816/9.8 = 8.192 m.

So she land 8.192 m away from her bank. The distance away from the opposite bank she lands is 10 - 8.192 m = 1.808 m ≅ 1.81 m

8 0
3 years ago
Anaerobic metabolism:
goblinko [34]

Explanation:

B. leads to muscle strain.

5 0
3 years ago
The granulation pattern that astronomers have observed on the surface of the Sun tells us that: a. the Sun is a lot cooler on th
Norma-Jean [14]

Answer:

c. hot material must be rising from the Sun's hotter interior

Explanation:

Granulation is the grainy appearance of the solar photosphere produced by the top of the convection cells in the sun.

The grainy appearance are produced by granules on the photosphere of the sun and granules are caused by convection currents of plasma within the sun's convection zone.

The interior of these granules are brighter (and thus hotter) than the exterior of the granules which are darker.

<u>So, the granulation pattern that astronomers have observed on the surface of the Sun tells us that hot material must be rising from the Sun's hotter interior.</u>

4 0
3 years ago
A car travels on a straight, level road. (a) Starting from rest, the car is going 38 ft/s (26 mi/h) at the end of 4.0 s. What is
lbvjy [14]

Answer:

a)9.5\frac{ft}{s^2}\\ b) 12.66\frac{ft}{s^2}

Explanation:

A body has acceleration when there is a change in the velocity vector, either in magnitude or direction. In this case we only have a change in magnitude. The average acceleration represents the speed variation that takes place in a given time interval.

a)

a_{avg}=\frac{\Delta v}{\Delta t}\\a_{avg}=\frac{v_{f}-v_{i}}{t_{f}- t_{i}}\\a_{avg}=\frac{38\frac{ft}{s}-0}{4 s- 0}=9.5\frac{ft}{s^2}\\

b)

a_{avg}=\frac{\Delta v}{\Delta t}\\a_{avg}=\frac{v_{f}-v_{i}}{t_{f}- t_{i}}\\a_{avg}=\frac{76\frac{ft}{s}-38\frac{ft}{s}}{7 s- 4s}\\a_{avg}=\frac{38\frac{ft}{s}}{3s}=12.66\frac{ft}{s^2}

8 0
3 years ago
Work out the kinetic energy of a 2.5 kg remote-controlled car that is moving at 2 m/s.
lbvjy [14]

Answer: 5 joules

Explanation:

mass=m=2.5kg

Velocity=v=2m/s

Kinetic energy=ke

ke=(m x v x v)/2

ke=(2.5 x 2 x 2)/2

Ke=10/2

Ke=5

Kinetic energy=5 joules

8 0
3 years ago
Other questions:
  • A single-turn current loop carrying a 4.00 A current, is in the shape of a right-angle triangle with sides of 50.0 cm, 120 cm, a
    15·1 answer
  • Sara wanted to paddle her canoe in the swamp to see alligators. She dragged the 45 Newton canoe for 36 seconds down the boardwal
    15·1 answer
  • Why does a lead of a pencil becomes smaller after use brainly people plplplsss help
    7·1 answer
  • The weight of an ice sheet can cause continental lithosphere to sink into the underlying asthenosphere due to ____.
    11·1 answer
  • Carbon show some unique property name them name them​
    14·1 answer
  • A 13,500 kg railroad freight car travels on a level track at a speed of 4.5 m/s. It collided and coupled with a 25,000 kg second
    8·1 answer
  • Compute the dot product of the vectors u and v​, and find the angle between the vectors. Bold v equals 7 Bold i minus Bold j and
    6·1 answer
  • Oh no! The Hulk just fell off the Empire State Building! Calculate how long it took him to fall straight down from the top of th
    10·1 answer
  • 8. An airplane is flying at 200 m/s when it touches the ground at the airport. It has a constant negative acceleration, and slow
    11·1 answer
  • A motorist travels 130 km in 2 hours.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!