1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldi70 [24.7K]
3 years ago
12

Ignoring the electron spin what is the largest possible energy difference, if the magnetic field is 2.02 tesla?

Physics
1 answer:
Nonamiya [84]3 years ago
5 0

Complete Question:

When specially prepared Hydrogen atoms with their electrons in the 6f state are placed into a strong uniform magnetic field, the degenerate energy levels split into several levels. This is the so called normal Zeeman effect.

Ignoring the electron spin what is the largest possible energy difference, if the magnetic field is 2.02 Tesla?

Answer:

ΔE = 1.224 * 10⁻²² J

Explanation:

In the 6f state, the orbital quantum number, L = 3

The magnetic quantum number, m_{L} = -3, -2, -1, 0, 1, 2, 3

The change in energy due to Zeeman effect is given by:

\triangle E = m_{L} \mu_{B} B

Magnetic field B = 2.02 T

Bohr magnetron, \mu_{B} = 9.274 * 10^{-24} J/T

\triangle E = 6 * 9.274 * 10^{-24} * 2.2\\

ΔE = 1.224 * 10⁻²² J

You might be interested in
15m/s is how many Newtons
GuDViN [60]
147.09975 newton meters per second
5 0
3 years ago
A force of 20 N is exerted by an electric field on a test charge of 8.0 x 10² C at a point, P. What is the electric field streng
kenny6666 [7]

Answer:

the answer is equal to 1.6N/C

5 0
2 years ago
A 27.0-m steel wire and a 48.0-m copper wire are attached end to end and stretched to a tension of 145 N. Both wires have a radi
algol13

Answer:

The time taken by the wave to travel  along the combination of two wires is 458 ms.

Explanation:

Given that,

Length of steel wire= 27.0 m

Length of copper wire = 48.0 m

Tension = 145 N

Radius of both wires = 0.450 mm

Density of steel wire \rho_{s}= 7.86\times10^{3}\ kg/m^{3}

Density of copper wire \rho_{c}=8.92\times10^{3}\ kg/m^3

We need to calculate the linear density of steel wire

Using formula of linear density

\mu_{s}=\rho_{s}A

\mu_{s}=\rho_{s}\times\pi r^2

Put the value into the formula

\mu_{s}=7.86\times10^{3}\times\pi\times(0.450\times10^{-3})^2

\mu_{s}=5.00\times10^{-3}\ kg/m

We need to calculate the linear density of copper wire

Using formula of linear density

\mu_{c}=\rho_{s}A

\mu_{c}=\rho_{s}\times\pi r^2

Put the value into the formula

\mu_{c}=8.92\times10^{3}\times\pi\times(0.450\times10^{-3})^2

\mu_{c}=5.67\times10^{-3}\ kg/m

We need to calculate the velocity of the wave along the steel wire

Using formula of velocity

v_{s}=\sqrt{\dfrac{T}{\mu_{s}}}

v_{s}=\sqrt{\dfrac{145}{5.00\times10^{-3}}}

v_{s}=170.3\ m/s

We need to calculate the velocity of the wave along the steel wire

Using formula of velocity

v_{c}=\sqrt{\dfrac{T}{\mu_{c}}}

v_{c}=\sqrt{\dfrac{145}{5.67\times10^{-3}}}

v_{c}=159.9\ m/s

We need to calculate the time taken by the wave to travel  along the combination of two wires

t=t_{s}+t_{c}

t=\dfrac{l_{s}}{v_{s}}+\dfrac{l_{c}}{v_{c}}

Put the value into the formula

t=\dfrac{27.0}{170.3}+\dfrac{48.0}{159.9}

t=0.458\ sec

t=458\ ms

Hence, The time taken by the wave to travel  along the combination of two wires is 458 ms.

4 0
3 years ago
A car is traveling along a straight road at a velocity of +30.0 m/s when its engine cuts out. For the next 1.79 seconds, the car
Tanzania [10]

Answer:

first value+2nd +3rd

Explanation:

thug life and there

8 0
3 years ago
An object with mass 3.5 kg is attached to a spring with spring stiffness constant k = 270 N/m and is executing simple harmonic m
Elanso [62]

Answer:

Part a)

A = 0.066 m

Part b)

maximum speed = 0.58 m/s

Explanation:

As we know that angular frequency of spring block system is given as

\omega = \sqrt{\frac{k}{m}}

here we know

m = 3.5 kg

k = 270 N/m

now we have

\omega = \sqrt{\frac{270}{3.5}}

\omega = 8.78 rad/s

Part a)

Speed of SHM at distance x = 0.020 m from its equilibrium position is given as

v = \omega \sqrt{A^2 - x^2}

0.55 = 8.78 \sqrt{A^2 - 0.020^2}

A = 0.066 m

Part b)

Maximum speed of SHM at its mean position is given as

v_{max} = A\omega

v_{max} = 0.066(8.78) = 0.58 m/s

4 0
3 years ago
Other questions:
  • Shortly after the Earth first formed, intense heat built up and large portions of the planet became molten. What happened to the
    6·2 answers
  • In fair weather, the ground may become charged such that there is an electric field just above the surface of the Earth, pointin
    7·1 answer
  • What should you do if your boat capsizes answers?
    13·1 answer
  • The wheel of a car has a radius of 0.413 m. If the wheel rotates at 456 revolutions per minute, what is the speed (in m/s) at wh
    11·2 answers
  • A 0.150 kg baseball has 118 j of KE. how fast is the ball moving?(unit=m/s)
    7·1 answer
  • Calculate the density of a rod of metal in g/cm3, with a mass of 9.58g, a diameter of 8 mm and a height of 3.5cm
    7·1 answer
  • What can directly lead to unconformity on an exposed rock?
    10·1 answer
  • Circus a path along which electric current flows how would changing the battery in a circuit from 9 V to 1.5 V most likely affec
    14·2 answers
  • Explain the basic reason of conduction of an electric current through a conductor.​
    5·2 answers
  • Newton's 3rd law is also known as the<br> law of
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!