Answer:
When an electric current flows, the shape of the magnetic field is very similar to the field of a bar magnet
Explanation:
Answer:
Explanation:
cSep 20, 2010
well, since player b is obviously inadequate at athletics, it shows that player b is a woman, and because of this, she would not be able to hit the ball. The magnitude of the initial velocity would therefore be zero.
Anonymous
Sep 20, 2010
First you need to solve for time by using
d=(1/2)(a)(t^2)+(vi)t
1m=(1/2)(9.8)t^2 vertical initial velocity is 0m/s
t=.45 sec
Then you find the horizontal distance traveled by using
v=d/t
1.3m/s=d/.54sec
d=.585m
Then you need to find the time of player B by using
d=(1/2)(a)(t^2)+(vi)t
1.8m=(1/2)(9.8)(t^2) vertical initial velocity is 0
t=.61 sec
Finally to find player Bs initial horizontal velocity you use the horizontal equation
v=d/t
v=.585m/.61 sec
so v=.959m/s
The answers is an electrical force.
Under normal conditions, atoms interact with each other via electrons that are furthest away from the nucleus. These electrons from the what is called the outer shell of the atom, electrons from the outer shell that can participate in chemical reactions are called valence electrons.
The ratio of the maximum photoelectron kinetic energy to the work function will be 3:1.
<h3 /><h3>What is the photoelectric effect?</h3>
When a medium receives electromagnetic radiation, electrostatically charged particles are emitted from or inside it.
The emission of ions from a steel plate when light falls on it is a common definition of the effect. The substance could be a solid, liquid, or gas; and the released particles could be protons or electrons.
A particular metal emits photoelectrons when exposed to light with energy three times its work function:

The ratio of the maximum photoelectron kinetic energy to the work function will be;

Hence, the ratio of the maximum photoelectron kinetic energy to the work function will be 3:1.
To learn more about the photoelectric effect refer to the link;
brainly.com/question/9260704
#SPJ1