Answer:
a) 8.13
b) 4.10
Step-by-step explanation:
Given the rate of reaction R'(t) = 2/t+1 + 1/√t+1
In order to get the total reaction R(t) to the drugs at this times, we need to first integrate the given function to get R(t)
On integrating R'(t)
∫ (2/t+1 + 1/√t+1)dt
In integration, k∫f'(x)/f(x) dx = 1/k ln(fx)+C where k is any constant.
∫ (2/t+1 + 1/√t+1)dt
= ∫ (2/t+1)dt+ ∫ (1/√t+1)dt
= 2∫ 1/t+1 dt +∫1/+(t+1)^1/2 dt
= 2ln(t+1) + 2(t+1)^1/2 + C
= 2ln(t+1) + 2√(t+1) + C
a) For total reactions from t = 1 to t = 12
When t = 1
R(1) = 2ln2 + 2√2
≈ 4.21
When t = 12
R(12) = 2ln13 + 2√13
≈ 12.34
R(12) - R(1) ≈ 12.34-4.21
≈ 8.13
Total reactions to the drugs over the period from t = 1 to t= 12 is approx 8.13.
b) For total reactions from t = 12 to t = 24
When t = 12
R(12) = 2ln13 + 2√13
≈ 12.34
When t = 24
R(24) = 2ln25 + 2√25
≈ 16.44
R(12) - R(1) ≈ 16.44-12.34
≈ 4.10
Total reactions to the drugs over the period from t = 12 to t= 24 is approx 4.10
Answer:
19/14 or approximately 1.357143
Answer:
35
Step-by-step explanation:
15+14+6
15+14= 29
29+6= 35
Answer:
might be 7
Step-by-step explanation:
count the rise and run from Q to P. count up 3 and right 4.
If there are 3 feet per yard, then all you have to do is take the 96 feet and divide by 3, this gives you 32 yards.
If you have any questions please let me know, other wise take care. (: