Answer:
Coil 2 have 235 loops
Explanation:
Given
The number of loops in coil 1 is n
₁=
159
The emf induced in coil 1 is ε
₁
=
2.78
V
The emf induced in coil 2 is ε
₂
=
4.11
V
Let
n
₂ is the number of loops in coil 2.
Given, the emf in a single loop in two coils are same. That is,
ϕ
₁/n
₁=
ϕ
₂
n
₂⟹
2.78/159
=
4.11/
n
₂
n₂=![\frac{159 * 4.11}{2.78}](https://tex.z-dn.net/?f=%5Cfrac%7B159%20%2A%204.11%7D%7B2.78%7D)
n₂=235
Therefore, the coil 2 has n
₂=
235 loops.
The answer is A. The kinetic energy
Look first for the relation between deBroglie wavelength (λ) and kinetic energy (K):
K = ½mv²
v = √(2K/m)
λ = h/(mv)
= h/(m√(2K/m))
= h/√(2Km)
So λ is proportional to 1/√K.
in the potential well the potential energy is zero, so completely the electron's energy is in the shape of kinetic energy:
K = 6U₀
Outer the potential well the potential energy is U₀, so
K = 5U₀
(because kinetic and potential energies add up to 6U₀)
Therefore, the ratio of the de Broglie wavelength of the electron in the region x>L (outside the well) to the wavelength for 0<x<L (inside the well) is:
1/√(5U₀) : 1/√(6U₀)
= √6 : √5
This is an elastic collision
bcuz i think they move apart after the collision
sorry if im wrong
L<span>ight with a spectral composition that stimulates all three types of the color sensitive </span>cone cells<span> of the </span>human eye<span> in nearly equal amounts appears white.
</span>