So you can use the equation force = mass x acceleration to do 2 x 5 to get 10 N
Answer:
Explanation:
the one thrown below the horizontal is going straight down, while the one above the horizontal will experience a projectile motion which will makes it move farther away from the building where it was projected.
Answer:
P = 140000 [Pa]
Explanation:
To solve this problem we must remember that pressure is defined as the relationship between Force on the area of a body.
In this particular problem, we are given the force acting on the upper surface of the block, including the force exerted by the atmospheric pressure.
P = F/A
where:
P = pressure [Pa] (units of Pascals)
F = force = 3.5*10⁴ [N]
A = area = 0.25 [m²]
P = 3.5*10⁴/0.25
P = 140000 [Pa]
Answer:
The percentage of its mechanical energy does the ball lose with each bounce is 23 %
Explanation:
Given data,
The tennis ball is released from the height, h = 4 m
After the third bounce it reaches height, h' = 183 cm
= 1.83 m
The total mechanical energy of the ball is equal to its maximum P.E
E = mgh
= 4 mg
At height h', the P.E becomes
E' = mgh'
= 1.83 mg
The percentage of change in energy the ball retains to its original energy,
ΔE % = 45 %
The ball retains only the 45% of its original energy after 3 bounces.
Therefore, the energy retains in each bounce is
∛ (0.45) = 0.77
The ball retains only the 77% of its original energy.
The energy lost to the floor is,
E = 100 - 77
= 23 %
Hence, the percentage of its mechanical energy does the ball lose with each bounce is 23 %
We know that potential energy is the energy that is stored within an object while kinetic energy is the energy that is in motion. The connection between the two is that potential energy transforms into kinetic energy