Answer:
speed and time are Vf = 4.43 m/s and t = 0.45 s
Explanation:
This is a problem of free fall, we have the equations of kinematics
Vf² = Vo² + 2g x
As the object is released the initial velocity is zero, let's look at the final velocity with the equation
Vf = √( 2 g X)
Vf = √(2 9.8 1)
Vf = 4.43 m/s
This is the speed with which it reaches the ground
Having the final speed we can find the time
Vf = Vo + g t
t = Vf / g
t = 4.43 / 9.8
t = 0.45 s
This is the time of fall of the body to touch the ground
<span>The Earth’s internal "((HEAT))" source provides the energy for our dynamic planet, providing it with the driving force for on-going disastrous events such as earthquakes and volcanic eruptions and for plate-tectonic motion. </span>
Answer:
0.54m
Explanation:
Step one:
given data
length of seesaw= 3m
mass of man m1= 85kg
weight = mg
W1= 85*10= 850N
mass of daughter m2= 35kg
W2= 35*10= 350N
distance from the center= (1.5-0.2)= 1.3m
Step two:
we know that the sum of clockwise moment equals the anticlockwise moment
let the distance the must sit to balance the system be x
taking moment about the center of the system
350*1.3=850*x
455=850x
divide both sides by 850
x=455/850
x=0.54
Hence the man must sit 0.54m from the right to balance the system
It confirmed medeleeve's hypothesis (prediction) and showed the use of his table
Answer:
Friction force on the bullet is 58.7 N opposite to its velocity
Explanation:
As we know that initial speed of the bullet is 55 m/s
after travelling into the sand bag by distance d = 1.34 m it comes to rest
so final speed

now we can use kinematics top find the acceleration of the bullet

so we have


now by Newton's II law we know that

so we have

