The answer should be flammability
Answer:
The tube should be held vertically, perpendicular to the ground.
Explanation:
As the power lines of ground are equal, so its electrical field is perpendicular to the ground and the equipotential surface is cylindrical. Therefore, if we put the position fluorescent tube parallel to the ground so the both ends of the tube lie on the same equipotential surface and the difference is zero when its potential.
And the ends of the tube must be on separate equipotential surfaces to optimize potential. The surface near the power line has a greater potential value and the surface farther from the line has a lower potential value, so the tube must be placed perpendicular to the floor to maximize the potential difference.
The magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.
The given parameters;
- <em>initial temperature of metals, = </em>
<em /> - <em>initial temperature of water, = </em>
<em> </em> - <em>specific heat capacity of copper, </em>
<em> = 0.385 J/g.K</em> - <em>specific heat capacity of aluminum, </em>
= 0.9 J/g.K - <em>both metals have equal mass = m</em>
The quantity of heat transferred by each metal is calculated as follows;
Q = mcΔt
<em>For</em><em> copper metal</em><em>, the quantity of heat transferred is calculated as</em>;

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>copper metal</em>;

<em>For </em><em>aluminum metal</em><em>, the quantity of heat transferred is calculated as</em>;

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>aluminum metal </em><em>;</em>

Thus, we can conclude that the magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.
Learn more here:brainly.com/question/15345295
Answer:

Explanation:
In an ideal transformer, the ratio of the voltages is proportional to the ratio of the number of turns of the windings. In this way:

In this case:

Therefore, using the previous equation and the data provided, let's solve for
:

Hence, the number of loops in the secondary is approximately 41667.