Answer: c) with the same brightness
Explanation: The load in this case the bulb, is not polarized ( it has no positive and negative points) thus any connection relative to the battery (source) will have no effect on it brightness.
Also, brightness is a function of current and in this case the voltage ( from battery) and resistance of load (bulb) is constant, and according to ohms law (V=IR) if the current is constant at the first connection, it will be the same at the reversed connection.
Answer:
a) 18.015
Explanation:
I Googled it, hope this helped
Answer:
λ = 864 nm
Explanation:
To find the wavelength of the light you use the following formula, which determines the position of the m-th fringe in an interference pattern:
(1)
ym: position of a bright fringe
D: distance from the slits to the screen = 3,7 m
d: distance between slits = 0,2mm = 0,2 *10^-3 m
m: order of the fringe
λ: wavelength of the light
You have the distance from the central peak to the third fringe (0,048m). Then, you can use the equation (1) with m=3 and solve for the wavelength:

henc, the wavelength of the light is 864nm
Answer:
3.28 degree
Explanation:
We are given that
Distance between the ruled lines on a diffraction grating, d=1900nm=
Where 


We have to find the angular width of the gap between the first order spectrum and the second order spectrum.
We know that

Using the formula
m=1


Now, m=2





Hence, the angular width of the gap between the first order spectrum and the second order spectrum=3.28 degree
First of all, let's write the equation of motions on both horizontal (x) and vertical (y) axis. It's a uniform motion on the x-axis, with constant speed

, and an accelerated motion on the y-axis, with initial speed

and acceleration

:


where the negative sign in front of g means the acceleration points towards negative direction of y-axis (downward).
To find the distance from the landing point, we should find first the time at which the projectile hits the ground. This can be found by requiring

Therefore:

which has two solutions:

is the time of the beginning of the motion,

is the time at which the projectile hits the ground.
Now, we can find the distance covered on the horizontal axis during this time, and this is the distance from launching to landing point: