1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrac [35]
4 years ago
9

1/4 × -2/3 = how do I solve this problem

Mathematics
2 answers:
Katyanochek1 [597]4 years ago
6 0

\bf \cfrac{1}{4}\times \cfrac{-2}{3}\implies \cfrac{1\times -2}{4\times 3}\implies \cfrac{-2}{12}\implies \stackrel{simplified}{-\cfrac{1}{6}}

musickatia [10]4 years ago
3 0

I suggest getting a TI84 Plus calculator! It may not be necessary now, but it'll definitely help later on!

Just type in (1/4)x(-2/3), press math, select fraction (assuming you want a fraction) and you'll get your answer.

Or you could multiply the numerators together (1x-2), and then the denominators together (4x3) and then reduce it to get -1/6.

You might be interested in
Differentiating a Logarithmic Function in Exercise, find the derivative of the function. See Examples 1, 2, 3, and 4.
mote1985 [20]

Answer:

\frac{d}{dx}\left(\ln \left(\frac{x}{x^2+1}\right)\right)=\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\frac{-x^2+1}{x\left(x^2+1\right)}

Step-by-step explanation:

To find the derivative of the function y(x)=\ln \left(\frac{x}{x^2+1}\right) you must:

Step 1. Rewrite the logarithm:

\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\left(\ln{\left(x \right)} - \ln{\left(x^{2} + 1 \right)}\right)^{\prime }

Step 2. The derivative of a sum is the sum of derivatives:

\left(\ln{\left(x \right)} - \ln{\left(x^{2} + 1 \right)}\right)^{\prime }}={\left(\left(\ln{\left(x \right)}\right)^{\prime } - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }\right)

Step 3. The derivative of natural logarithm is \left(\ln{\left(x \right)}\right)^{\prime }=\frac{1}{x}

{\left(\ln{\left(x \right)}\right)^{\prime }} - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }={\frac{1}{x}} - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }

Step 4. The function \ln{\left(x^{2} + 1 \right)} is the composition f\left(g\left(x\right)\right) of two functions f\left(u\right)=\ln{\left(u \right)} and u=g\left(x\right)=x^{2} + 1

Step 5.  Apply the chain rule \left(f\left(g\left(x\right)\right)\right)^{\prime }=\frac{d}{du}\left(f\left(u\right)\right) \cdot \left(g\left(x\right)\right)^{\prime }

-{\left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }} + \frac{1}{x}=- {\frac{d}{du}\left(\ln{\left(u \right)}\right) \frac{d}{dx}\left(x^{2} + 1\right)} + \frac{1}{x}\\\\- {\frac{d}{du}\left(\ln{\left(u \right)}\right)} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}=- {\frac{1}{u}} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}

Return to the old variable:

- \frac{1}{{u}} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}=- \frac{\frac{d}{dx}\left(x^{2} + 1\right)}{{\left(x^{2} + 1\right)}} + \frac{1}{x}

The derivative of a sum is the sum of derivatives:

- \frac{{\frac{d}{dx}\left(x^{2} + 1\right)}}{x^{2} + 1} + \frac{1}{x}=- \frac{{\left(\frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x^{2}\right)\right)}}{x^{2} + 1} + \frac{1}{x}=\frac{1}{x^{3} + x} \left(x^{2} - x \left(\frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x^{2}\right)\right) + 1\right)

Step 6. Apply the power rule \frac{d}{dx}\left(x^{n}\right)=n\cdot x^{-1+n}

\frac{1}{x^{3} + x} \left(x^{2} - x \left({\frac{d}{dx}\left(x^{2}\right)} + \frac{d}{dx}\left(1\right)\right) + 1\right)=\\\\\frac{1}{x^{3} + x} \left(x^{2} - x \left({\left(2 x^{-1 + 2}\right)} + \frac{d}{dx}\left(1\right)\right) + 1\right)=\\\\\frac{1}{x^{3} + x} \left(- x^{2} - x \frac{d}{dx}\left(1\right) + 1\right)\\

\frac{1}{x^{3} + x} \left(- x^{2} - x {\frac{d}{dx}\left(1\right)} + 1\right)=\\\\\frac{1}{x^{3} + x} \left(- x^{2} - x {\left(0\right)} + 1\right)=\\\\\frac{1 - x^{2}}{x \left(x^{2} + 1\right)}

Thus, \frac{d}{dx}\left(\ln \left(\frac{x}{x^2+1}\right)\right)=\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\frac{-x^2+1}{x\left(x^2+1\right)}

3 0
3 years ago
Reflect shape A in the line y = x.
marshall27 [118]

Answer:

I didn't know and I tried ‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️‍♂️

8 0
3 years ago
Consider the equation below -2(5x + 8) = 14 + 6x complete the statements below with the process used to achieve steps 1-4
Ad libitum [116K]

Step-by-step explanation:

1. Distribute the -2. multiply-2 with 5x and 8. it will be -10x-16=14+6x. For me, i make small numbers negative or positive than big ones. Add 16 to both sides. it will be -10x=30+6x. Subtract 6x. -10x-6x=-16x. Divide both sides by 16. x=30/16= 1 and 14/16

6 0
3 years ago
MORE EXA<br>-7x + 11 = 19 - X​
Allisa [31]
The answer is x=1.3
You are welcome
4 0
4 years ago
 I am so confused on functions! Please help! 
Gekata [30.6K]
Functions are basically another way of expressing a way to get y or x or anything (mostly used for graphs) You will see functions like <em>f(x)=</em> <em>23y-5 </em>(that was made up). Basically the number in the parenthesis in front of the f is what you're finding. So the equation after the equal sign is how to find whatever is being found. So in this case, finding x can be pretty easy. By the way, when graphing this you have x as the run and y as the rise. <em />
4 0
4 years ago
Other questions:
  • Please help me with this Geo question
    15·1 answer
  • Katie bought some flower. She use 3/8 of it to bake bread. What percent of the flowers left?
    15·1 answer
  • sprinter can run 10 yards in 5⁄3 seconds. How long will it take the same sprinter at the same speed to run 30 yards?
    15·1 answer
  • What happens to the area of the circle when it's radius is doubled?<br>12.57÷3.14<br>radius= 4cm
    11·1 answer
  • A family has two cars. The first car has a fuel efficiency of 20 miles per gallon of gas and the second has a fuel efficiency of
    8·1 answer
  • 3.<br> The 3 primary uses of fresh water in industry are
    11·1 answer
  • Mary walks 4 miles in one hour. At this rate, how long will it take her to walk 25 miles
    15·1 answer
  • Lupe has 14 stickers that she wants to give to 2 friends.
    9·1 answer
  • Solve the matrix equation. The inverse of the coefficient matrix is given. EXPLAIN. The answer's D. (2/9,-4/3,-1/3)
    5·1 answer
  • If the radius is 18 cm and the angle at centre of circle is 120° then the
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!