Answer:
2
Step-by-step explanation:
It is the only one that makes sense
 
        
                    
             
        
        
        
Complete Question
Consider the isosceles triangle. left side (2z+8)units, bottom of triangle (4z-10)units, right side of triangle (2z+8) units Part A Which expression represents the perimeter of the triangle? a.(4z+16) units b.(6z−2)units c.(8z−16) units d.(8z+6) units
Answer:
d. (8z + 6) units
Step-by-step explanation:
The formula for the Perimeter of a Triangle is :Side A + Side B + Side C
Hence,
(2z + 8)units + (4z - 10) units + (2z + 8)units
= (2z + 8 + 4z - 10 + 2z + 8)units
Collect like terms
= 2z + 4z + 2z + 8 - 10 + 8
= 8z + 6 units 
The expression that represents the perimeter of the triangle is (8z +6) units
 
        
             
        
        
        
9514 1404 393
Answer:
   nπ -π/6 . . . for any integer n
Step-by-step explanation:
   tan(x) +√3 = -2tan(x) . . . . . given
   3tan(x) = -√3 . . . . . . . . . . . add 2tan(x)-√3
   tan(x) = -√3/3 . . . . . . . . . . divide by 3
   x = arctan(-√3/3) = -π/6 . . . . use the inverse tangent function to find x
This is the value in the range (-π/2, π/2). The tangent function repeats with period π, so the set of values of x that will satisfy this equation is ...
   x = n·π -π/6 . . . . for any integer n
 
        
             
        
        
        
That's it? How many cupcakes
        
                    
             
        
        
        
Answer:
ab = 2
Step-by-step explanation:
Given equations
ax² +ax + 2 = 0 
 x² + x + b = 0
root of both the equation 
x= 1
then we can plug in x = 1 in both the equation
ax² +ax + 2 = 0                        x² + x + b = 0
a*1² +a*1 + 2 = 0                        1² + 1 + b = 0
a +a + 2 = 0                                 1 + 1 + b = 0
2a + 2 = 0                                    2 + b = 0
2a = -  2                                         b = -2
a = -2/2 = -1
Thus, 
a = -1
b = -2
a*b = -1*-2 = 2
ab = 2