Complete question :
Standardized tests: In a particular year, the mean score on the ACT test was 19.3 and the standard deviation was 5.3. The mean score on the SAT mathematics test was 532 and the standard deviation was 128. The distributions of both scores were approximately bell-shaped. Round the answers to at least two decimal places. Part: 0/4 Part 1 of 4 (a) Find the z-score for an ACT score of 26. The Z-score for an ACT score of 26 is
Answer:
1.26
Step-by-step explanation:
Given that:
For ACT:
Mean score, m = 19.3
Standard deviation, s = 5.3
Zscore for ACT score of 26;
Using the Zscore formula :
(x - mean) / standard deviation
x = 26
Zscore :
(26 - 19.3) / 5.3
= 6.7 / 5.3
= 1.2641509
= 1.26
Answer: 
Step-by-step explanation:
The missing figure is attached.
For this exercise it is important to remember that, by definition, the opposite interior angles of an inscribed quadrilateral are supplementary, which means that their sum is 180 degrees.
Based on this, you can identify that the angle D and the angle B are opposite and, therefore, supplementary.
Knowing that, you can write the following equation:

Now you must solve for "x" in order to find its value. This is:

Then:

You know that:

Therefore, since you know the value of "x", you can substitute it into
and then you must evaluate, in order to find the measure of the angle A. This is:

The product of (x1)^2 is 20
Answer:
Step-by-step explanation:
The data which has higher frequency in the given data set is the mode.
Mode = 33