Answer:
No conozco esta respuesta. Esta en el libro
Step-by-step explanation:
3 3/4
= 3+ 3/4
= 3+ 0.75
= 3.75
The length as a decimal is 3.75 m~
Answer:
It is not normally distributed as it has it main concentration in only one side.
Step-by-step explanation:
So, we are given that the class width is equal to 0.2. Thus we will have that the first class is 0.00 - 0.20, second class is 0.20 - 0.40 and so on(that is 0.2 difference).
So, let us begin the groupings into their different classes, shall we?
Data given:
0.31 0.31 0 0 0 0.19 0.19 0 0.150.15 0 0.01 0.01 0.19 0.19 0.53 0.53 0 0.
(1). 0.00 - 0.20: there are 15 values that falls into this category. That is 0 0 0 0.19 0.19 0 0.15 0.15 0 0.01 0.01 0.19 0.19 0 0.
(2). 0.20 - 0.40: there are 2 values that falls into this category. That is 0.31 0.31
(3). 0.4 - 0.6 : there are 2 values that falls into this category.
(4). 0.6 - 0.8: there 0 values that falls into this category. That is 0.53 0.53.
Class interval frequency.
0.00 - 0.20. 15.
0.20 - 0.40. 2.
0.4 - 0.6. 2.
Answer:
It is 5/5 or 1/1 as it goes up 5 and to the left 5!!!
Answer:
34.6 units
Step-by-step explanation:
The lenght of fencing required is the total distance between point A to B, B to C, C to D, and D to A. That is the distance between all 4 corners of the meadow.
The coordinates of the corners of the meadow is shown on a coordinate plane in the attachment. (See attachment below).
Let's use the distance formula to calculate the distance between the 4 corners of the meadow using their coordinates as follows:
Distance between point A(-6, 2) and point B(2, 6):

Let,





(nearest tenth)
Distance between B(2, 6) and C(7, 1):

Let,





(nearest tenth)
Distance between C(7, 1) and D(3, -5):

Let,





(nearest tenth)
Distance between D(3, -5) and A(-6, 2):

Let,





(nearest tenth)
Length of fencing required = 8.9 + 7.1 + 7.2 + 11.4 = 34.6 units