Answer:
Csc(pi)
Cot(pi)
Csc(0)
Sec(90)
Step-by-step explanation:
Answer:
P=648
Step-by-step explanation:
<span>Sphere: (x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
Intersection in xy-plane: (x - 4)^2 + (y + 12)^2 = 36
Intersection in xz-plane: DNE
Intersection in yz-plane: (y + 12)^2 + (z - 8)^2 = 84
The desired equation is quite simple. Let's first create an equation for the sphere centered at the origin:
x^2 + y^2 + z^2 = 10^2
Now let's translate that sphere to the desired center (4, -12, 8). To do that, just subtract the center coordinate from the x, y, and z variables. So
(x - 4)^2 + (y - -12)^2 + (z - 8)^2 = 10^2
(x - 4)^2 + (y - -12)^2 + (z - 8)^2 = 100
Might as well deal with that double negative for y, so
(x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
And we have the desired equation.
Now for dealing with the coordinate planes. Basically, for each coordinate plane, simply set the coordinate value to 0 for the axis that's not in the desired plane. So for the xy-plane, set the z value to 0 and simplify. So let's do that for each plane:
xy-plane:
(x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
(x - 4)^2 + (y + 12)^2 + (0 - 8)^2 = 100
(x - 4)^2 + (y + 12)^2 + (-8)^2 = 100
(x - 4)^2 + (y + 12)^2 + 64 = 100
(x - 4)^2 + (y + 12)^2 = 36
xz-plane:
(x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
(x - 4)^2 + (0 + 12)^2 + (z - 8)^2 = 100
(x - 4)^2 + 12^2 + (z - 8)^2 = 100
(x - 4)^2 + 144 + (z - 8)^2 = 100
(x - 4)^2 + (z - 8)^2 = -44
And since there's no possible way to ever get a sum of 2 squares to be equal to a negative number, the answer to this intersection is DNE. This shouldn't be a surprise since the center point is 12 units from this plane and the sphere has a radius of only 10 units.
yz-plane:
(x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
(0 - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
(-4)^2 + (y + 12)^2 + (z - 8)^2 = 100
16 + (y + 12)^2 + (z - 8)^2 = 100
(y + 12)^2 + (z - 8)^2 = 84</span>
Considering that the data has no outliers, the mean of 3.2 inches should be used to describe the center of the data represented in this line plot.
<h3>What measure should be used to describe the center of a data-set?</h3>
It depends if the data-set has outliers or not.
- If it does not have outliers, the mean should be used.
- If it has, the median should be used.
The dot plot gives the number of times each measure appears. Since there is no outliers, that is, all values are close, the mean should be used. It is given by:
M = (2 x 1 + 3 x 2 + 2 x 3 + 1 x 5 + 1 x 6 + 1 x 7)/(2 + 3 + 2 + 1 + 1 + 1) = 3.2 inches.
The mean of 3.2 inches should be used to describe the center of the data represented in this line plot.
More can be learned about the mean of a data-set at brainly.com/question/24628525
Volume of A= πR².H ==> V(A)=4π m³
Volume of V =πR².H ==>V(B)=8π m³
.Ratio of A to B =(4π) /(4π) = 1/2