1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Varvara68 [4.7K]
2 years ago
12

(a) Calculate the magnitude of the gravitational force exerted by Mars on a 80 kg human standing on the surface of Mars. (The ma

ss of Mars is 6.4multiply1023 kg and its radius is 3.4multiply106 m.)
(b) Calculate the magnitude of the gravitational force exerted by the human on Mars.

(c) For comparison, calculate the approximate magnitude of the gravitational force of this human on a similar human who is standing 4 meters away.

(d) What approximations or simplifying assumptions must you make in these calculations? (Note: Some of these choices are false because they are wrong physics!)

-Use the same gravitational constant in (a) and (b) despite its dependence on the size of the masses.

-Treat Mars as though it were spherically symmetric.

-Treat the humans as though they were points or uniform-density spheres.

-Ignore the effects of the Sun, which alters the gravitational force that one object exerts on another.
Physics
1 answer:
andrew11 [14]2 years ago
4 0

Answer:

a) F=1.044\times 10^9\ N

b)F'=1.044\times 10^9\ N

c) F_p=1.0672\times10^{-7}\ N

d) Treat the humans as though they were points or uniform-density spheres.

Explanation:

Given:

  • mass of Mars, M=6.4\times 10^{23}\ kg
  • radius of the Mars, r=3.4\times 10^{6}\ m
  • mass of human, m=80\ kg

a)

Gravitation force exerted by the Mars on the human body:

F=G.\frac{M.m}{r^2}

where:

G=6.67 \times 10^{-11}\ m^3.kg^{-1}.s^{-2} = gravitational constant

F=6.67\times10^{-11}\times \frac{6.4\times 10^{23}\times 80}{(3.4\times 10^{6})^2}

F=1.044\times 10^9\ N

b)

The magnitude of the gravitational force exerted by the human on Mars is equal to the force by the Mars on human.

F'=F

F'=1.044\times 10^9\ N

c)

When a similar person of the same mass is standing at a distance of 4 meters:

F_p=6.67\times10^{-11}\times \frac{80\times 80}{4}

F_p=1.0672\times10^{-7}\ N

d)

The gravitational constant is a universal value and it remains constant in the Universe and does not depends on the size of the mass.

  • Yes, we have to treat Mars as spherically symmetric so that its center of mass is at its geometric center.
  • Yes, we also have to ignore the effect of sun, but as asked in the question we have to calculate the gravitational force only due to one body on another specific body which does not brings sun into picture of the consideration.
You might be interested in
Alarge plate is fabricated from a steel alloy that has a plane strain fracture toughness of 82.4 MPa m1/2. If the plate is expos
Korvikt [17]

Answer:

minimum length of a surface crack is 18.3 mm

Explanation:

Given data

plane strain fracture toughness K = 82.4 MPa m1/2

stress σ = 345 MPa

Y = 1

to find out

the minimum length of a surface crack

solution

we will calculate length by this formula

length = 1/π ( K / σ Y)²

put all value

length = 1/π ( K / σ Y)²

length = 1/π ( 82.4 10^{3/2} / 345× 1)²

length = 18.3 mm

minimum length of a surface crack is 18.3 mm

4 0
2 years ago
A railroad track and a road cross at right angles. An observer stands on the road and watches an eastbound train traveling at 60
mamaluj [8]

Answer:

After 4 s of passing through the intersection, the train travels with 57.6 m/s

Solution:

As per the question:

Suppose the distance to the south of the crossing watching the east bound train be x = 70 m

Also, the east bound travels as a function of time and can be given as:

y(t) = 60t

Now,

To calculate the speed, z(t) of the train as it passes through the intersection:

Since, the road cross at right angles, thus by Pythagoras theorem:

z(t) = \sqrt{x^{2} + y(t)^{2}}

z(t) = \sqrt{70^{2} + 60t^{2}}

Now, differentiate the above eqn w.r.t 't':

\frac{dz(t)}{dt} = \frac{1}{2}.\frac{1}{sqrt{3600t^{2} + 4900}}\times 2t\times 3600

\frac{dz(t)}{dt} = \frac{1}{sqrt{3600t^{2} + 4900}}\times 3600t

For t = 4 s:

\frac{dz(4)}{dt} = \frac{1}{sqrt{3600\times 4^{2} + 4900}}\times 3600\times 4 = 57.6\ m/s

4 0
2 years ago
All biomes don’t have the same level of biodiversity. What seems to be the optimal conditions for high biodiversity?
irinina [24]

Answer:

See the answer below

Explanation:

The optimal conditions for high biodiversity seem to be a <u>warm temperature</u> and <u>wet climates</u>.

<em>The tropical areas of the world have the highest biodiversity and are characterized by an average annual temperature of above 18 </em>^oC<em> and annual precipitation of 262 cm. The areas are referred to as the world's biodiversity hotspots. </em>

Consequently, it follows logically that the optimal conditions for high biodiversity would be a warm temperature of above 18 ^oC and wet environment with annual precipitation of not less than 262 cm.

The variation in temperature and precipitation across biomes can thus be said to be responsible for the variation in the level of biodiversity in them.

6 0
3 years ago
A 5.0-kg centrifuge takes 95 s to spin up from rest to its final angular speed with constant angular acceleration. A point locat
stellarik [79]

Answer:

(a) 17.37 rad/s^2

(b) 12479

Explanation:

t = 95 s, r = 6 cm = 0.06 m, v = 99 m/s, w0 = 0

w = v / r = 99 / 0.06 = 1650 rad/s

(a) Use first equation of motion for rotational motion

w = w0 + α t

1650 = 0 + α x 95

α = 17.37 rad/s^2

(b) Let θ be the angular displacement

Use third equation of motion for rotational motion

w^2 = w0^2 + 2 α θ

1650^2 = 0 + 2 x 17.37 x θ

θ = 78367.87 rad

number of revolutions, n = θ / 2 π

n = 78367.87 / ( 2 x 3.14)

n = 12478.9 ≈ 12479

4 0
3 years ago
A battery is two or more individual cells connected together. Some large trucks utilize large 24 volt lead acid batteries. How m
uranmaximum [27]

Answer:

 #_pile = 12 celdas

Explanation:

Lead acid sulfur batteries generate each cell a potential of 2 volts. By colonato to reach the voltage of 24 volts

        #_pile = 24/2

       #_pile = 12 cledas

serially connected

5 0
3 years ago
Other questions:
  • While planets are smaller than stars, planets are generally larger than which of the following?
    15·2 answers
  • The roller-coaster car shown in fig. 6-41 (h1 = 30 m, h2 = 12 m, h3 = 20 m), is dragged up to point 1 where it is released from
    8·1 answer
  • Communication with submerged submarines via radio waves is difficult because seawater is conductive and absorbs electromagnetic
    8·1 answer
  • A photon of ultraviolet (uv) light possesses enough energy to mutate a strand of human dna. what is the energy of a single uv ph
    12·1 answer
  • If two objects have the same mass, what determines the strength of the gravitational force between them? (4 points) Select one:
    6·1 answer
  • Can a body having zero velocity move with uniform speed? Give an example.
    10·1 answer
  • Rob measures the solubility of three different salts in water at 22°C.
    6·2 answers
  • Help please help me?
    15·1 answer
  • If the Earth’s mass decreased, how would the gravity between the Sun and Earth change?
    5·2 answers
  • What is a small portable device that counts every step taken throughout the day?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!