1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Varvara68 [4.7K]
3 years ago
12

(a) Calculate the magnitude of the gravitational force exerted by Mars on a 80 kg human standing on the surface of Mars. (The ma

ss of Mars is 6.4multiply1023 kg and its radius is 3.4multiply106 m.)
(b) Calculate the magnitude of the gravitational force exerted by the human on Mars.

(c) For comparison, calculate the approximate magnitude of the gravitational force of this human on a similar human who is standing 4 meters away.

(d) What approximations or simplifying assumptions must you make in these calculations? (Note: Some of these choices are false because they are wrong physics!)

-Use the same gravitational constant in (a) and (b) despite its dependence on the size of the masses.

-Treat Mars as though it were spherically symmetric.

-Treat the humans as though they were points or uniform-density spheres.

-Ignore the effects of the Sun, which alters the gravitational force that one object exerts on another.
Physics
1 answer:
andrew11 [14]3 years ago
4 0

Answer:

a) F=1.044\times 10^9\ N

b)F'=1.044\times 10^9\ N

c) F_p=1.0672\times10^{-7}\ N

d) Treat the humans as though they were points or uniform-density spheres.

Explanation:

Given:

  • mass of Mars, M=6.4\times 10^{23}\ kg
  • radius of the Mars, r=3.4\times 10^{6}\ m
  • mass of human, m=80\ kg

a)

Gravitation force exerted by the Mars on the human body:

F=G.\frac{M.m}{r^2}

where:

G=6.67 \times 10^{-11}\ m^3.kg^{-1}.s^{-2} = gravitational constant

F=6.67\times10^{-11}\times \frac{6.4\times 10^{23}\times 80}{(3.4\times 10^{6})^2}

F=1.044\times 10^9\ N

b)

The magnitude of the gravitational force exerted by the human on Mars is equal to the force by the Mars on human.

F'=F

F'=1.044\times 10^9\ N

c)

When a similar person of the same mass is standing at a distance of 4 meters:

F_p=6.67\times10^{-11}\times \frac{80\times 80}{4}

F_p=1.0672\times10^{-7}\ N

d)

The gravitational constant is a universal value and it remains constant in the Universe and does not depends on the size of the mass.

  • Yes, we have to treat Mars as spherically symmetric so that its center of mass is at its geometric center.
  • Yes, we also have to ignore the effect of sun, but as asked in the question we have to calculate the gravitational force only due to one body on another specific body which does not brings sun into picture of the consideration.
You might be interested in
What layer of the atmosphere is hot but does not have enough gas molecules to transfer heat to you (i.e., you would not feel the
fenix001 [56]

Answer:

thermosphere...........

7 0
2 years ago
Which sound wave-object interaction is used by animals in echolocation?
tekilochka [14]
The answer is reflection
5 0
3 years ago
Read 2 more answers
The atmosphere of Jupiter is essentially made up of hydrogen, H2. For H2, the specific gas constant is 4157 J/(kg K). The accele
Alenkinab [10]

Answer:

h=17357.9m

Explanation:

The atmospheric pressure is just related to the weight of an arbitrary column of gas in the atmosphere above a given area. So, if you are higher in the atmosphere less gass will be over you, which means you are bearing less gas and the pressure is less.

To calculate this, you need to use the barometric formula:

P=P_0e^{-\frac{Mg}{RT}h}

Where R is the gas constant, M the molar mass of the gas, g the acceleration of gravity, T the temperature and h the height.

Furthermore, the specific gas constant is defined by:

R_{H_2}=\frac{R}{M}

Therefore yo can write the barometric formula as:

P=P_0e^{-\frac{g}{R_{H_2}T}h}

at the surface of the planet (h =0) the pressure is P_0[\tex]. The pressure at the height requested is half of that:[tex]P=\frac{P_0}{2}

applying to the previuos equation:

\frac{P_0}{2} =P_0e^{-\frac{g}{R_{H_2}T}h}

solving for h:

h=17357.9m

3 0
3 years ago
A particle's position is given by x = 4.0t2 - 32t + 36, with x in meters and time t in seconds. At what position does the partic
daser333 [38]
Firstly, we must find the equation the speed, it can be obtained by the derivative of x =<span>x = 4.0t2 - 32t + 36, it means v= 8.0t-32. the particule stops means v= 0, and 0= 8.0t-32, which implies 8t=32, so t=4s, and then x(t=4) = 4.0(4)^2 - 32(4) + 36= - 28m
so x = - 28 m</span>
8 0
3 years ago
A car travels south at 30 m/s for 5 minutes. What is its velocity
Marysya12 [62]
Miles per second right?
Hope that helped

4 0
3 years ago
Read 2 more answers
Other questions:
  • A star has a size of 0.1 solar radius. How many times larger is the sun than the star?
    7·2 answers
  • In order for exercise to be effective, it must substantially increase heart rate. True False
    15·2 answers
  • Science help me find the 2 variables please
    6·2 answers
  • A toy gun uses a spring to project a 6.4 g soft rubber sphere horizontally. The spring constant is 9.0 N/m, the barrel of the gu
    8·1 answer
  • Which most likely appear in the central nervous system only?
    16·2 answers
  • A baseball leaves a bat with a horizontal velocity of 20 m/s. In a time of 0.25 s, How far will it have traveled horizontally?
    13·1 answer
  • What happens to water when it changes to ice?
    8·2 answers
  • When the voltage is
    6·1 answer
  • What does it mean for forces to be in equilibrium?.
    12·1 answer
  • 6. A tire 0.500 m in radius rotates at a constant rate of 300 revolutions per minute. Find the speed and acceleration of a small
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!