A) position time graph for both is shown
here one of the graph is of lesser slope which means it is moving with less speed while other have larger slope which shows larger speed
At one point they intersects which is the point where they both will meet
B) Let the two will meet after time "t"
now we can say that
if they both will meet after time "t"
then the total distance moved by you and other person will be same as the distance between you and home
so it is given as



so they will meet after t = 6 min
so from position time graph we can see that two will meet after t = 6 min where at this position two graphs will intersect
The cutoff frequency for magnesium is 8.93 x 10¹⁴ Hz.
<h3>What is cutoff frequency?</h3>
The work function is related to the frequency as
W0 = h x fo
where, fo = cutoff frequency and h is the Planck's constant
Given is the work function for magnesium is 3.70 eV.
fo = 3.7 x 1.6 x 10⁻¹⁹ / 6.626 x 10⁻³⁴
fo = 8.93 x 10¹⁴ Hz.
Thus, the cut off frequency is 8.93 x 10¹⁴ Hz.
Learn more about cutoff frequency.
brainly.com/question/14378802
#SPJ1
The most important characteristics that are exhibited by metals are-
1- Metals are ductile
2-Most metals are conductive in nature.
3-Most metals are malleable.
4- Metals have strong inter molecular force of attraction between the.
5-Metals have luster.
6-Metals are sonorous.
Here we are given Tungsten filament.
Tungsten is a metal.So it must be conductive and as well as ductile in nature.
The electric filament that we are using in our electric bulb glows due to the heating effect of current.Hence the chosen substances for glowing electric bulb must have high melting point.
The melting point of tungsten is 1650 degree celsius which is very high.That's why it is used in electric bulb.
Hence the correct answer to the question is the third one i.e Tungsten is ductile,has a high melting point, and is electrically conductive.
Answer:
a)1815Joules b) 185Joules
Explanation:
Hooke's law states that the extension of a material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically;
F = ke where;
F is the applied force
k is the elastic constant
e is the extension of the material
From the formula, k = F/e
F1/e1 = F2/e2
If a force of 60N causes an extension of 0.5m of the string from its equilibrium position, the elastic constant of the spring will be ;
k = 60/0.5
k = 120N/m
a) To get the work done in stretching the spring 5.5m from its position,
Work done by the spring = 1/2ke²
Given k = 120N/m, e = 5.5m
Work done = 1/2×120×5.5²
Work done = 60× 5.5²
Work done = 1815Joules
b) work done in compressing the spring 1.5m from its equilibrium position will be gotten using the same formula;
Work done = 1/2ke²
Work done =1/2× 120×1.5²
Works done = 60×1.5²
Work done = 135Joules