1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bond [772]
2 years ago
12

In tin at room temperature, the mobility of mobile electrons is about 1.5 ✕ 10⁻³ (m/s)/(V/m), and there are about 3.7 ✕ 10²⁸ mob

ile electrons per m³. Calculate the conductivity σ. In actual practice, it is usually easier to measure the conductivity σ and deduce the mobility u from this measurement.
Physics
1 answer:
kifflom [539]2 years ago
6 0

Answer:

\sigma = 8.88 \times 10^6 \frac{1}{ohm-m}

Explanation:

As we know that mobility of electrons is given as

\mu = \frac{v_d}{E}

now we also know that

j = \sigma E

here we know

j = ne v_d

ne v_d = \sigma E

so we have

\sigma = ne \frac{v_d}{E}

\sigma = (3.7 \times 10^{28})(1.6 \times 10^{-19})(1.5 \times 10^{-3})

\sigma = 8.88 \times 10^6 \frac{1}{ohm-m}

You might be interested in
When you step on the accelerator to increase the speed of your car, the force that accelerates the car is: A. the force of your
Dmitry [639]

Answer:

B. the force of friction of the road on the tires

Explanation:

Unless the car engine is like jet engine, the main force that accelerates the car forward is the force of friction of the road on the tires, which is ultimately driven by the force of engine on the tires shaft. As the engine, and the shaft are part of the system, their interaction is internal. According to Newton laws of motion, the acceleration needs external force, in this case it's the friction of the road on the tires.

6 0
2 years ago
A 3.00 kg block moving 2.09 m/s
Talja [164]

Answer:11.64kgm/s

Explanation:

4 0
3 years ago
A 0.25 kg skeet (clay target) is fired at an angle of 30 degrees to the horizon with a speed of 25 m/s. When it reaches the maxi
kozerog [31]

Answer:

6.51 m and 37.13 m

Explanation:

from the question we were given

mass of skeet = 0.25 kg

speed of skeet = 25 m/s

angle = 30 degrees to the horizon

mass of pellet = 15 g

speed of pellet = 2000 m/s

without being hit by the pellet, the x and y components of the skeet velocity are  

Vx = 25 cos 30 = 21.65

Vy = 25 sin 30 = 12.5

now

V = U + (a x t)

where V = final velocity, U = initial velocity , a = acceleration, t = time and s = distance

-25 sin 30 = 25 sin 30 + (-9.8 x t)

-12.5 = 12.5 - 9.8 t

t = 2.55 s

also

V^2 = U^2 + 2as  ( s = vertical distance and V = 0 )

0 = (25 sin 30)^2 + 2 x (-9.8) x Y

19.6 Y = 156.25

Y =7.97 m

the distance traveled without the pellet hitting the skeet can be gotten using distance = speed x time

distance = 21.65 x 2.55 = 55.2 m

applying the conservation of linear momentum

on the x axis : (Ms x Us) + (Mp x Up) = (Ms x Vx) + (Mp x Vx)  ...equation 1

on the y axis :   (Ms x Us) + (Mp x Up) = (Ms x Vy) + (Mp x Vy) ...equation 2

(0.25 x 25 cos 30) + 0 = (0.25 +0.015) Vx

 Vx = 20.42m/s

0 + (0.015 x 200) = (0.25 + 0.015) Vy

 Vy = 11.32 m/s

now V^2 = U^2 + 2 as

 0 = 11.3^2 + (2 x (-9.8) x s)

s = 6.51 m                          

  • to find the extra distance moved after collision we apply

s = ut + 1/2 at^2

-7.98 = 11.32t + 1/2 (-9.8) t^2

4.9 t^2 - 11.32t + 7.98

t =  3.17 s

recall that distance = speed x time

distance = 20.42 x 3.17 = 64.73 m

the distance of the skeet before being hit would be half of the distance it travels without being hit, this is because the skeet was hit at its maximum height = 55.2 /2

= 27.6 m

therefore the extra distance traveled would be the change in distance = 64.73 -27.6 = 37.13 m

5 0
3 years ago
Tom has two pendulums with him. Pendulum 1 has a ball of mass 0.2 kg attached to it and has a length of 5 m. Pendulum 2 has a ba
mars1129 [50]

Given Information:

Pendulum 1 mass = m₁ = 0.2 kg

Pendulum 2 mass = m₂ = 0.6 kg

Pendulum 1 length = L₁ = 5 m

Pendulum 2 length = L₂ = 1 m

Required Information:

Affect of mass on the frequency of the pendulum = ?

Answer:

The mass of the ball will not affect the frequency of the pendulum.

Explanation:

The relation between period and frequency of pendulum is given by

f = 1/T

The period of pendulum is given by

T = 2π√(L/g)

Where g is the acceleration due to gravity and L is the length of the string

As you can see the period (and frequency too) of pendulum is independent of the mass of the pendulum. Therefore, the mass of the ball will not affect the frequency of the pendulum.

Bonus:

Pendulum 1:

T₁ = 2π√(L₁/g)

T₁ = 2π√(5/9.8)

T₁ = 4.49 s

f₁ = 1/T₁

f₁ = 1/4.49

f₁ = 0.22 Hz

Pendulum 2:

T₂ = 2π√(L₂/g)

T₂ = 2π√(1/9.8)

T₂ = 2.0 s

f₂ = 1/T₂

f₂ = 1/2.0

f₂ = 0.5 Hz

So we can conclude that the higher length of the string increases the period of the pendulum and decreases the frequency of the pendulum.

3 0
2 years ago
Read 2 more answers
What is the mass of an object if a 30 N force makes it accelerate at 6 m/s2
jasenka [17]

Answer:

5 kg

Explanation:

Acceleration = 6 m/s^2

Force = 30 N

Force = mass * acceleration

mass = force / acceleration

mass = 30 / 6

mass = 5 kg

4 0
2 years ago
Other questions:
  • Upper section of the lithosphere
    5·2 answers
  • The roots of plants are important to photosynthesis because they...
    5·1 answer
  • a stone is dropped into a deep well and is heard to hit the water 3.41 s after being dropped. determine the depth of the well. .
    10·1 answer
  • At what point on the position-time graph shown is the object's instantaneous velocity greatest?
    13·2 answers
  • An engineer is testing a large wind turbine that is used generating energy. Intially the large wind blades are locked in place a
    7·2 answers
  • What is the mass of a stone moving at a speed of 15 m/s and having a monument at 7.1 kg meters per second
    10·1 answer
  • In the equation for the gravitational force between two objects, which quantity must be squared?
    10·1 answer
  • What is polarization. How can we remove it?
    12·1 answer
  • 9. Liquid A has greater density than Liquid B. Which liquid will be exerting more pressure on the sides of the container?
    7·1 answer
  • A box with a mass of 2 kg only has four forces acting on it: One force of 16 N due East. One force of 24 N due South. One force
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!