The points $(0,4)$ and $(1,3)$ lie on a circle whose center is on the $x$-axis. What is the radius of the circle?
2 answers:
Answer:
1 unit
Step-by-step explanation:
x² + (y-k)² = r²
0² + (4-k)² = r²
16 - 8k + k² = r²
1² + (3-k)² = r²
1 + 9 - 6k + k² = r²
r² - k² = 10 - 6k
16 - 8k = 10 - 6k
2k = 6
k = 3
r² - 3² = 10 - 6(3)
r² = 10 - 18 + 9
r² = 1
r = 1
Answer:
Step-by-step explanation:
let the centre be (x,0) ...(∵ it lies on x-axis)
radius=√((x-0)²+(0-4)²)=√(x²+16)
also radius =√((x-1)²+(0-3)²)=√((x-1)²+9)
∴ √(x²+16)=√((x-1)²+9)
x²+16=(x-1)²+9
x²-(x-1)²=9-16
x²-(x²-2x+1)=-7
x²-x²+2x-1=-7
2x=-7+1=-6
x=-6/2=-3
so centre=(-3,0)
and radius=√(x²+16)=√((-3)²+16)=√(9+16)=√25=5
You might be interested in
The answer is
5mn(KUASA DUA) -6gh(KUASA DUA) +2
See the photo attached. The boxed answer is the corrected answer
C, [1,109). Hope this helps you m8
$7.90
Hope this helps!
Have a great day:)
It can be a fraction, a decimal, a mixed number, or any irrational number.