Answer : The molal freezing point depression constant of liquid X is, 
Explanation : Given,
Mass of urea (solute) = 5.90 g
Mass of liquid X (solvent) = 450 g = 0.450 kg
Molar mass of urea = 60 g/mole
Formula used :

where,
= change in freezing point
= freezing point of solution = 
= freezing point of liquid X = 
i = Van't Hoff factor = 1 (for non-electrolyte)
= Molal-freezing-point-depression constant = ?
m = molality
Now put all the given values in this formula, we get


Therefore, the molal freezing point depression constant of liquid X is, 
Answer:
A group of dissimilar elements with a net charge remaining is called a polyatomic ion.
Explanation:
The sealed bottle would have the highest concentration of Carbon Dioxide because the pressure is highest and there was no time for diffusion.
We are provided with the amount of energy released when one mole of carbon reacts. We mus first convert the given mass of carbon to moles and then compute the energy released for the given amount.
Moles = mass / atomic mass
Moles = 23.5 / 12
Moles = 1.96 moles
One mole releases 394 kJ/mol
1.96 moles will release:
394*1.96
= 772.24
The enthalpy change of the reaction will be -772.24 kJ