Answer:
Cs
Explanation:
This question is formatted oddly, but I understand the gist of it. Essentially, even if the periodic table is cut off by one row and missing the lanthanides and actinides, basic rules of the table still apply.
Remember the general trend of ionization energy: <u>the farther to the right and the farther up, the higher the ionization energy.</u>
As an example, fluorine is the "t-rex" of the elements because it's so electronegative that it hoards electrons, and that means it's hard to take its electrons away, which gives it a high ionization energy.
Out of the given choices, cesium Cs has the lowest ionization energy because it's so far to the left and so low. You can just nab an electron and it won't even mind too much.
<em>Why not the other answer choices? </em>Bromine is a halogen (so it's on the far right of the table) and it's fairly high up, so its ionization energy is much too high. Argon is a noble gas, so it's so stable that it hates it when someone tries to take an electron away; it has a very high ionization energy. Nickel, likewise, is a transition metal, so it's not the answer either.
Ammonia isn't an element, it's a compound made by mixing the elements Nitrogen and Hydrogen in the Haber process. Therefore, it isn't on the periodic table
Answer: 3 moles Na
Explanation: To find the number of moles of Na, divide the number of atoms of Na with the Avogadro's Number.
1.806x10²⁴ atoms Na x 1 mole Na / 6.022x10²³ atoms Na
= 2.99 or 3 moles Na
Answer:
It is greater than -600kJ/mol and the amount of energy required to break bonds is greater than the amount of energy released in forming bonds.
Explanation:
In an endothermic reaction, the reaction requires a determined amount of energy to occurs.
The reaction of the problem has H = -600kJ/mol. The reaction is endothermic and the energy that the reaction needs is absorbed by the reactants. That means, the energy of products:
Is greater than -600kJ/mol and the amount of energy required to break bonds is greater than the amount of energy released in forming bonds.
Quantitative is anything that is relating to a number value. Think “quantity”
Example:
1. There are 5 ml of water
2. There are 3 beakers
3. It takes 30 minutes for the reaction
Qualitative is about characteristics that can be described
Example
1. The liquid is green
2. The solution turned into a gas
3. Bubbles were produced