Weight of the carriage 
Normal force 
Frictional force 
Acceleration 
Explanation:
We have to look into the FBD of the carriage.
Horizontal forces and Vertical forces separately.
To calculate Weight we know that both the mass of the baby and the carriage will be added.
- So Weight(W)

To calculate normal force we have to look upon the vertical component of forces, as Normal force is acting vertically.We have weight which is a downward force along with
, force of
acting vertically downward.Both are downward and Normal is upward so Normal force 
- Normal force (N)

- Frictional force (f)

To calculate acceleration we will use Newtons second law.
That is Force is product of mass and acceleration.
We can see in the diagram that
and
component of forces.
So Fnet = Fy(Horizontal) - f(friction) 
- Acceleration (a) =

So we have the weight of the carriage, normal force,frictional force and acceleration.
Complete Question
A person throws a pumpkin at a horizontal speed of 4.0 m/s off a cliff. The pumpkin travels 9.5m horizontally before it hits the ground. We can ignore air resistance.What is the pumpkin's vertical displacement during the throw? What is the pumpkin's vertical velocity when it hits the ground?
Answer:
The pumpkin's vertical displacement is 
The pumpkin's vertical velocity when it hits the ground is 
Explanation:
From the question we are told that
The horizontal speed is 
The horizontal distance traveled is 
The horizontal distance traveled is mathematically represented as

Where t is the time taken
substituting values

=> 

Now the vertical displacement is mathematically represented as

now the vertical velocity before the throw is zero
So


Now the final vertical velocity is mathematically represented as

substituting values


112/2.63= 42.586
42.586 is your answer I need 20 characters
Potential energy = mgh
Potential energy = 10 x 9.8 x 1.3
Potential energy = 127.4 J
Answer:
The electronic configuration of Fe2+ is 1s2 2s2 2p6 3s2 3p6 3d6 and Fe3+ is 1s2 2s2 2p6 3s2 3p6 3d5. Fe2+ contains 2 fewer electrons compared to the electronic configuration of Fe.