I believe that the answer to this would be option C. Since sandstones are not commonly seen among river beds, the condition that would make us easier to understand as to what happened to this is how fast the river was flowing. Due to the pressure of the river, this brought other sediments with it most especially sandstones.
<span>The lowest point in Death Valley is 85 m below sea level. The summit of nearby Mt. Whitney has an elevation of 4420 m. </span>
Answer:
T₂ = 123.9 N, θ = 66.2º
Explanation:
To solve this exercise we use the law of equilibrium, since the diaphragm does not appear, let's use the adjoint to see the forces in the system.
The tension T1 = 100 N, we create a reference frame centered on the pole
X axis
T₁ₓ - = 0
T_{2x}= T₁ₓ
Y axis y
T_{1y} + T_{2y} - 200N = 0
T_{2y} = 200 -T_{1y}
let's use trigonometry to find the component of the stresses
sin 60 = T_{1y} / T₁
cos 60 = t₁ₓ / T₁
T_{1y} = T₁ sin 60
T1x = T₁ cos 60
T_{1y}y = 100 sin 60 = 86.6 N
T₁ₓ = 100 cos 60 = 50 N
for voltage 2 it is done in the same way
T_{2y} = T₂ sin θ
T₂ₓ = T₂ cos θ
we substitute
T₂ sin θ= 200 - 86.6 = 113.4
T₂ cos θ = 50 (1)
to solve the system we divide the two equations
tan θ = 113.4 / 50
θ = tan⁻¹ 2,268
θ = 66.2º
we caption in equation 1
T₂ cos 66.2 = 50
T₂ = 50 / cos 66.2
T₂ = 123.9 N
Answer:
The frequency of wave is 160Hz.
Explanation:
Given that the formula of speed is V = f×λ where V represents speed, f is frequency and λ is wavelength.
So first thing, you have to make frequency the subject by dividing wavelength on both sides :
Next you have to substitute the value of v and f into the formula :
Let λ = 2.5m,
Let v = 400m/s,