Answer:
C = 4,174 10³ V / m^{3/4}
, E = 7.19 10² / ∛x, E = 1.5 10³ N/C
Explanation:
For this exercise we can calculate the value of the constant and the electric field produced,
Let's start by calculating the value of the constant C
V = C
C = V / x^{4/3}
C = 220 / (11 10⁻²)^{4/3}
C = 4,174 10³ V / m^{3/4}
To calculate the electric field we use the expression
V = E dx
E = dx / V
E = ∫ dx / C x^{4/3}
E = 1 / C x^{-1/3} / (- 1/3)
E = 1 / C (-3 / x^{1/3})
We evaluate from the lower limit x = 0 E = E₀ = 0 to the upper limit x = x, E = E
E = 3 / C (0- (-1 / x^{1/3}))
E = 3 / 4,174 10³ (1 / x^{1/3})
E = 7.19 10² / ∛x
for x = 0.110 cm
E = 7.19 10² /∛0.11
E = 1.5 10³ N/C
The correct answer is D, Diamond
Explanation:
Given:
v₀ = 0 m/s
a = 9.8 m/s²
t = 4.7 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (4.7 s) + ½ (9.8 m/s²) (4.7 s)²
Δy ≈ 110 m