Let r, g and b represent red, green and blue.
r+g+b = 74
r=g-1
b=r+g
Again, r+g+b = 74. Let's substitutte r+g for b: r+g+(r+g) = 74.
Next, let's eliminate r. Use r=g-1. Then g-1 + g + g-1 + g = 74
Combining the g terms, 4g - 2 = 74 => 4g = 76 => g = 19
Recall that r=g-1
and
b=r+g
Find r. If r=g-1, and g=19, then r = 19-1=18
Find b: b = r+g = 18+19=37
So there are 37 blue candies, 18 red candies and 19 green candies.
Check: 37+18+19=74 ??? Yes.
They hiked more on the 2nd day because they are retracing their steps.
How many models does the following set have? 5,5,5,7,8,12,12,12,150,150,150
Strike441 [17]
<h3>
Answer: 3 modes</h3>
The three modes are 5, 12, and 150 since they occur the most times and they tie one another in being the most frequent (each occurring 3 times).
Only the 7 and 8 occur once each, and aren't modes. Everything else is a mode. It's possible to have more than one mode and often we represent this as a set. So we'd say the mode is {5, 12, 150} where the order doesn't matter.
61/100, because if it is 0.(value) than it is value / 100 assuming value is 2 digits long. We cannot simplify it further because 61 is prime number.