There are four quantum numbers:
1) Principal quantum number which tells the shell in which the electron is and is an integer number starting from 1. Both of these electrons are in the same shell, the third.
2) Azimuthal quantum number which tells the subshell of the electron. This has a value of an integer starting from 0, 0 being the s orbital. The first electron is in the d orbital due to the number being 2 and the second is in the p orbital due to the number being 1.
3) Magnetic quantum number tells the orbital within the subshell. The first electron is in the -1 orbital of the d subshell (which has values from -2 to 2) and the second is in the -1 orbital of the p subshell (which has values from -1 to 1).
4) Spin quantum number which specifies the spin on the electron, both of the electrons have the same spin.
Answer: v = 
Explanation: q = magnitude of electronic charge = 
mass of an electronic charge =
V= potential difference = 4V
v = velocity of electron
by using the work- energy theorem which states that the kinetic energy of the the electron must equal the work done use in accelerating the electron.
kinetic energy =
, potential energy = qV
hence, 

In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is

where D=5.00 m is the distance of the screen from the slits, and

is the distance between the two slits.
The fringes on the screen are 6.5 cm=0.065 m apart from each other, this means that the first maximum (m=1) is located at y=0.065 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:

And from the relationship between frequency and wavelength,

, we can find the frequency of the light:
Hello!
Since the two weights are <em>off</em> the table, the block will move towards letter F.
I hope this helps :))
Explanation:
A wave is a disturbance in a medium. For example, when some pebbles are thrown in water, the water particles gets disturbed. A wave is characterized by the following parameters i.e.
Frequency
Wavelength etc
The number of oscillations or vibrations in a medium is called the frequency of a wave.
Also, the distance between two consecutive crests and troughs is called the wavelength of a wave. The relationship between the wavelength and the frequency of a wave is given by :
Speed of wave = frequency × wavelength