The matter from the explosion can reach him, hitting him. He should be able to feel that.
Answer:
The only parameter that changes is mass m
It is only necessary to calculate the ratio Eh/Ee

The kinetic energy of the heavy paricle is three times the kinetic energy of an electron
Answer:

Explanation:
We know that when we don't have air friction on a free fall the mechanical energy (I will symbololize it with ME) is equal everywhere. So we have:

where me(1) is mechanical energy while on h=10m
and me(2) is mechanical energy while on the ground
Ek(1) + DynamicE(1) = Ek(2) + DynamicE(2)
Ek(1) is equal to zero since an object that has reached its max height has a speed equal to zero.
DynamicE(2) is equal to zero since it's touching the ground
Using that info we have

we divide both sides of the equation with mass to make the math easier.

-- Volume . . . made out of 3 dimensions of length
-- Density . . . made out of mass, and 3 dimensions of length
-- Area . . . made out of 2 dimensions of length
-- Acceleration . . . made out of length and time
<em>Mass</em> is not made out of anything else. It's fundamental. A few other fundamental things are length, time, and electric charge.
Answer:
The wire now has less (the half resistance) than before.
Explanation:
The resistance in a wire is calculated as:

Were:
R is resistance
is the resistance coefficient
l is the length of the material
s is the area of the transversal wire, in the case of wire will be circular area (
).
So if the lenght and radius are doubled, the equation goes as follows:

So finally because the circular area is a square function, the resulting equation is half of the one before.