Let the rod be on the x-axes with endpoints -L/2 and L/2 and uniform charge density lambda (2.6nC/0.4m = 7.25 nC/m).
The point then lies on the y-axes at d = 0.03 m.
from symmetry, the field at that point will be ascending along the y-axes.
A charge element at position x on the rod has distance sqrt(x^2 + d^2) to the point.
Also, from the geometry, the component in the y-direction is d/sqrt(x^2+d^2) times the field strength.
All in all, the infinitesimal field strength from the charge between x and x+dx is:
dE = k lambda dx * 1/(x^2+d^2) * d/sqrt(x^2+d^2)
Therefore, upon integration,
E = k lambda d INTEGRAL{dx / (x^2 + d^2)^(3/2) } where x goes from -L/2 to L/2.
This gives:
E = k lambda L / (d sqrt((L/2)^2 + d^2) )
But lambda L = Q, the total charge on the rod, so
E = k Q / ( d * sqrt((L/2)^2 + d^2) )
Lake effect is one condition
Sorry if this didn't help- I'm not quite sure what you're asking.
Answer:
A goal keepee catering the ball in time is answer
745.92 hz (b)
this is hte answer only because i seen it on the question lol