<h2>F = kAρv²</h2>
Explained in the attachment !
<h3>Hope it helps you!!</h3>
Answer:
C. Its velocity is perpendicular to its acceleration
Explanation:
Because acceleration is always perpendicular to the velocity when the velocity will change direction without change it's magnitude
The smaller body will have greater temperature change.
<h3><u>Explanation</u>:</h3>
Temperature is defined as the degree of hotness or coldness of a body. The relationship of the temperature with heat is described as
Q =m c dT.
Where Q is the heat content
m is the mass of body
c is the specific heat of body
dT is the temperature change of body.
Here the bodies are made up of same substance, so specific heat is same. The mass of bigger body is M and smaller body is m.
So the temperature change of the body will be dependent on the mass of the body. Heat loss by one body will be equal to heat gained by the other.
So M dT1 = mdT2.
So, M/m = dT2 / dT1.
So the the smaller body will be suffering higher temperature change.
<span>The centripetal force for such an arrangement can be found through the equation Fc = mv^2/r where m is the mass of the rotating object, v is that object's velocity, and r is the radius of rotation. In this case, we know that the maximum Fc that can be tolerated by the cord is 64N. Thus we set the equation up and solve for the value of v for which Fc = 64.
64 = 0.4*(v^2)/1
64/0.4 = 160 =
v^2
v = sqrt(160) = 12.65 m/s
At any speed faster than 12.65 m/s, the cord will break.</span>