Answer:
A sample size of 6755 or higher would be appropriate.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error M is given by:

90% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
52% of Independents in the sample opposed the public option.
This means that 
If we wanted to estimate this number to within 1% with 90% confidence, what would be an appropriate sample size?
Sample size of size n or higher when
. So







A sample size of 6755 or higher would be appropriate.