No, there isn't. Please consult your doctor if this is the case with yours or someone you know.
Answer:
2.49 * 10^(-4) m
Explanation:
Parameters given:
Frequency, f = 4.257 MHz = 4.257 * 10^6 Hz
Speed of sound in the body, v = 1.06 km/ = 1060 m/s
The speed of a wave is given as the product of its wavelength and frequency:
v = λf
Where λ = wavelength
This implies that:
λ = v/f
λ = (1060) / (4.257 * 10^6)
λ = 2.49 * 10^(-4) m
The wavelength of the sound in the body is 2.49 * 10^(-4) m.
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the ice cube is 
The temperature of the ice cube is
The mass of the copper cube is 
The final temperature of both substance is 
Generally form the law of thermal energy conservation,
The heat lost by the copper cube = heat gained by the ice cube
Generally the heat lost by the copper cube is mathematically represented as
![Q = m_c * c_c * [T_c - T_f ]](https://tex.z-dn.net/?f=Q%20%3D%20%20m_c%20%20%2A%20%20c_c%20%2A%20%20%5BT_c%20%20-%20%20T_f%20%5D)
The specific heat of copper is 
Generally the heat gained by the ice cube is mathematically represented as

Here L is the latent heat of fusion of the ice with value 
So

=>
So
=> 
The breaking distance consists of two parts. The first part is the first 0.5 seconds were no breaking occurs. Given values: t time, v₀ initial velocity:
x₁ = v₀*t
The second part occurs after t = 0,5s with the given acceleration: a = - 12 m/s²
were the final velocity is zero, v = 0 and the initial velocity v₀= 16m/s:
v = a*t + v₀ = 0 => v₀ = -a*t => t = v₀/-a
x₂ = 0.5*a*t² = 0.5*v°²/a
The total breaking distance is the sum of the two parts:
x = x₁ + x₂ = v₀* t + 0.5 * v₀² / a = 16 * 0.5 + 0.5 * 16² / 12 = 8 + 10,7 = 18,7
You can use this result to calculate the remaining distance. You can use the last equation to calculate the maximum speed you could have to avoid a collision.
Use x = 39m and solve for v₀.