Answer:
true
Explanation:
The diameter of the Moon is 3474 km. The distance across the United States, from Florida to Washington, is 4509.382 km.
Hey can u give a little more detail?
Complete Question
A commuter train passes a passenger platform at a constant speed of 39.6 m/s. The train horn is sounded at its characteristic frequency of 350 Hz.
(a)
What overall change in frequency is detected by a person on the platform as the train moves from approaching to receding
(b) What wavelength is detected by a person on the platform as the train approaches?
Answer:
a
![\Delta f = 81.93 \ Hz](https://tex.z-dn.net/?f=%5CDelta%20%20f%20%20%3D%20%2081.93%20%5C%20Hz)
b
![\lambda_1 = 0.867 \ m](https://tex.z-dn.net/?f=%5Clambda_1%20%3D%20%200.867%20%5C%20m)
Explanation:
From the question we are told that
The speed of the train is ![v_t = 39.6 m/s](https://tex.z-dn.net/?f=v_t%20%20%3D%20%2039.6%20m%2Fs)
The frequency of the train horn is ![f_t = 350 \ Hz](https://tex.z-dn.net/?f=f_t%20%3D%20%20350%20%5C%20Hz)
Generally the speed of sound has a constant values of ![v_s = 343 m/s](https://tex.z-dn.net/?f=v_s%20%20%3D%20%20343%20m%2Fs)
Now according to dopplers equation when the train(source) approaches a person on the platform(observe) then the frequency on the sound observed by the observer can be mathematically represented as
![f_1 = f * \frac{v_s}{v_s - v_t}](https://tex.z-dn.net/?f=f_1%20%3D%20%20f%20%2A%20%20%20%5Cfrac%7Bv_s%7D%7Bv_s%20-%20v_t%7D)
substituting values
![f_1 = 350 * \frac{343 }{343-39.6}](https://tex.z-dn.net/?f=f_1%20%3D%20%20350%20%2A%20%20%5Cfrac%7B343%20%7D%7B343-39.6%7D)
![f_1 = 395.7 \ Hz](https://tex.z-dn.net/?f=f_1%20%3D%20%20395.7%20%5C%20Hz)
Now according to dopplers equation when the train(source) moves away from the person on the platform(observe) then the frequency on the sound observed by the observer can be mathematically represented as
![f_2 = f * \frac{v_s}{v_s +v_t}](https://tex.z-dn.net/?f=f_2%20%3D%20%20f%20%2A%20%20%20%5Cfrac%7Bv_s%7D%7Bv_s%20%2Bv_t%7D)
substituting values
![f_2 = 350 * \frac{343}{343 + 39.6}](https://tex.z-dn.net/?f=f_2%20%3D%20%20350%20%2A%20%20%20%5Cfrac%7B343%7D%7B343%20%20%2B%2039.6%7D)
![f_2 = 313.77 \ Hz](https://tex.z-dn.net/?f=f_2%20%3D%20%20313.77%20%5C%20Hz)
The overall change in frequency is detected by a person on the platform as the train moves from approaching to receding is mathematically evaluated as
![\Delta f = f_1 - f_2](https://tex.z-dn.net/?f=%5CDelta%20%20f%20%20%3D%20%20f_1%20-%20f_2)
![\Delta f = 395.7 - 313.77](https://tex.z-dn.net/?f=%5CDelta%20%20f%20%20%3D%20%20395.7%20-%20313.77)
![\Delta f = 81.93 \ Hz](https://tex.z-dn.net/?f=%5CDelta%20%20f%20%20%3D%20%2081.93%20%5C%20Hz)
Generally the wavelength detected by the person as the train approaches is mathematically represented as
![\lambda_1 = \frac{v}{f_1 }](https://tex.z-dn.net/?f=%5Clambda_1%20%3D%20%20%5Cfrac%7Bv%7D%7Bf_1%20%7D)
![\lambda_1 = \frac{343}{395.7 }](https://tex.z-dn.net/?f=%5Clambda_1%20%3D%20%20%5Cfrac%7B343%7D%7B395.7%20%7D)
![\lambda_1 = 0.867 \ m](https://tex.z-dn.net/?f=%5Clambda_1%20%3D%20%200.867%20%5C%20m)
Answer:
cause we hear differently
Explanation:
Answer:
![9.11\times 10^{-15}.](https://tex.z-dn.net/?f=9.11%5Ctimes%2010%5E%7B-15%7D.)
Explanation:
The water droplet is initially neutral, it will obtain a 40 nC of charge when a charge of -40 nC is removed from the water droplet.
The charge on one electron, ![\rm e=-1.6\times 10^{-19}\ C.](https://tex.z-dn.net/?f=%5Crm%20e%3D-1.6%5Ctimes%2010%5E%7B-19%7D%5C%20C.)
Let the N number of electrons have charge -40 nC, such that,
Now, mass of one electron = ![\rm 9.11\times 10^{-31}\ kg.](https://tex.z-dn.net/?f=%5Crm%209.11%5Ctimes%2010%5E%7B-31%7D%5C%20kg.)
Therefore, mass of N electrons = ![\rm N\times 9.11\times 10^{-31}=2.5\times 10^{11}\times 9.11\times 10^{-31}=2.2775\times 10^{-19}\ kg.](https://tex.z-dn.net/?f=%5Crm%20N%5Ctimes%209.11%5Ctimes%2010%5E%7B-31%7D%3D2.5%5Ctimes%2010%5E%7B11%7D%5Ctimes%209.11%5Ctimes%2010%5E%7B-31%7D%3D2.2775%5Ctimes%2010%5E%7B-19%7D%5C%20kg.)
It is the mass of the of the water droplet that must be removed in order to obtain a charge of 40 nC.
Let it is m times the total mass of the droplet which is ![25\ \rm mg = 25\times 10^{-6}\ kg.](https://tex.z-dn.net/?f=25%5C%20%5Crm%20mg%20%3D%2025%5Ctimes%2010%5E%7B-6%7D%5C%20kg.)
Then,
![\rm m\times (25\times 10^{-3}\ kg) = 2.2775\times 10^{-19}\ kg.\\m=\dfrac{2.2775\times 10^{-19}\ kg}{25\times 10^{-3}\ kg}=9.11\times 10^{-15}.](https://tex.z-dn.net/?f=%5Crm%20m%5Ctimes%20%2825%5Ctimes%2010%5E%7B-3%7D%5C%20kg%29%20%3D%202.2775%5Ctimes%2010%5E%7B-19%7D%5C%20kg.%5C%5Cm%3D%5Cdfrac%7B2.2775%5Ctimes%2010%5E%7B-19%7D%5C%20kg%7D%7B25%5Ctimes%2010%5E%7B-3%7D%5C%20kg%7D%3D9.11%5Ctimes%2010%5E%7B-15%7D.)
It is the required fraction of mass of the droplet.