It all depends on what kind of wave, and what kind of medium.
For mechanical waves, like sound and earthquakes, the speed
is determined by the mechanical properties of the medium, like
density and stiffness.
For electromagnetic waves, like radio and light, the speed is
determined by the electrical properties of the medium, like
magnetic permeability and electrostatic permittivity.
That's a big part of the reason why sound and light travel
at different speeds through air, water, and jello.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
Below is the solution:
<span>T2cos(30) - T1cos(50) = 0
</span><span>T1sin(50) + T2sin(30) - (75 lbs.)*(accel. grav.) = 0
</span><span>T2cos(30) - T1cos(50) = 0 --> T1 = T2cos(30)/cos(50)
</span>
<span>T1sin(50) + T2sin(30) - (75 lbs.)*(accel. grav.) = 0
</span>(<span>T2cos(30)/cos(50))sin(50) + T2sin(30) - (75 lbs.)*(accel. grav.) = 0 --> Solve for T2
</span><span>T1 = -T1cos(50)i + T1sin(50)j
T2 = T2cos(30)i + T2sin(3)j
</span>
<span>(T2cos(30)/cos(50))sin(50) + T2sin(30) - (75 lbs.)*(accel. grav.) = 0 -->
T2[(cos(30)/cos(50))sin(50) + sin(30)] = 75*(grav) -->
T2 = 75*grav/ [(cos(30)/cos(50))sin(50) + sin(30)]
</span>
<span> T2 = 1566.49 </span>
Wow! 2.95m/s is a mighty fast pace for a backpacker. Must have one of those Star Wars anti-gravity packs. Also, I would be curious as to why she passed her destination and then walked back.
<span>Anyway, it goes like this: </span>
<span>Say the time walking east is 't', and the total time is 'T'. </span>
<span>Then 5340 m + .511 t = 1.43 T </span>
<span>(This assumes that velocity is positive in both directions) </span>
<span>Two unknowns in one equation. But you also know that the time spent walking west is </span>
<span>5340m/ 2.95m/s = 1810 sec. </span>
<span>and the total time T = 1810 +t </span>
<span>Substitute this into the first equation, and you can solve for t = 3092 sec. </span>
<span>Then T = 4902 sec. and distance walked east is .511t = 1580m.</span>
<u><em>It's called geothermal energy, and is present due to the incredible amount of heat present in Earth's interior from radioactive decay, friction, and residual heat from Earth's formation.</em></u>