Answer:
It would increase the final quantity of products
Explanation:
According to the Le- Chatelier principle,
At equilibrium state when stress is applied to the system, the system will behave in such a way to nullify the stress.
The equilibrium can be disturb,
By changing the concentration
By changing the volume
By changing the pressure
By changing the temperature
Consider the following chemical reaction.
Chemical reaction:
2NO₂ ⇄ N₂O₄
In this reaction the equilibrium is disturb by increasing the concentration of reactant.
When the concentration of reactant is increased the system will proceed in forward direction in order to regain the equilibrium. Because when reactant concentration is high it means reaction is not on equilibrium state. As the concentration of NO₂ increased the reaction proceed in forward direction to regain the equilibrium state and more product is formed.
Answer:
Option C. By increasing the temperature
Explanation:
From the graphical illustration above, we see clearly that the volume and temperature of the gas are directly proportional. This implies that as the temperature increases, the volume will also increase and as the temperature decreases, the volume will also decrease. This can further be explained by using the ideal gas equation as shown below:
PV = nRT
P is the pressure.
V is the volume.
n is the number of mole.
R is the gas constant.
T is the temperature.
PV = nRT
Divide both side by P
V = nRT/P
Since n and P are constant, the equation above becomes:
V & T
V = KT
K is the constant.
The above equation i.e V = KT implies that:
As T increases, V will also increase and as T decreases, V will also decrease.
Considering the question given above,
The volume of the gas can be increased if the temperature is increased.
Answer:
heating makes the alcohol molecules of the liquid move faster.