Question:
<span>A sample of nitrogen gas had a volume of 500mL, a pressure in its closed container of 740 torr and a temperature of 25°c. what was the volume of gas when the temperature was changed to 50°c and the new pressure was 760 torr?
Answer:
Data Given:
V</span>₁ = 500 mL
P₁ = 740 torr
T₁ = 25 °C + 273 = 298 K
V₂ = ?
P₂ = 760 torr
T₂ = 50 °C + 273 = 323 K
Solution:
Let suppose the gas is acting Ideally, then According to Ideal Gas Equation,
P₁ V₁ / T₁ = P₂ V₂ / T₂
Solving for V₂,
V₂ = (P₁ V₁ T₂) ÷ (T₁ P₂)
Putting Values,
V₂ = (740 torr × 500 mL × 323 K) ÷ (298 K × 760 torr)
V₂ = 527.68 mL
Answer:
0.045 L or 45 mL
Explanation:
Moles = Mass/M.Mass
Moles = 10 g / 109.94 g/mol
Moles = 0.09 moles
Also,
Molarity = Moles / Vol in L
Or,
Vol in L = Moles / Molarity
Vol in L = 0.09 mol / 2 mol/L
Vol in L = 0.045 L
Answer:
2HNO3 (aq) + Na2CO3 (aq) → 2NaNO3 (aq) + CO2 (g) + H2O (l)
Explanation:
This question is asking to write and balance an equation between between aqueous sodium carbonate (Na2CO3) and aqueous nitric acid (HNO3). The equation is as follows:
HNO3 (aq) + Na2CO3 (aq) → NaNO3 (aq) + CO2 (g) + H2O (l)
However, this equation is not balanced as the number of atoms of each element must be the same on both sides of the equation. To balance the equation, one will make use of coefficients as follows:
2HNO3 (aq) + Na2CO3 (aq) → 2NaNO3 (aq) + CO2 (g) + H2O (l)
Solid
, Inorganic,
Naturally Orcurring,
Defintite
Chemical Compostion,
Definite Crystalline Structure
5 Physical Properties
Hardness,
Color,
Crystal Shape,
Streak