Answer:
y=-(1)/(2)x-5
Step-by-step explanation:
Answer:
A Normal approximation to binomial cannot be applied to approximate the distribution of <em>X</em>, the number of computer crashes in a day.
Step-by-step explanation:
Let <em>X</em> = number of computers that will crash in a day.
The probability of a computer crashing in a day is, <em>p </em>= 0.99.
A random sample of <em>n</em> = 131 is selected.
A random computer crashing in a day is independent of the others.
The random variable <em>X</em> follows a Binomial distribution with parameters <em>n</em> = 131 and <em>p</em> = 0.99.
But the sample size is quite large, i.e. <em>n</em> > 30.
So the distribution of <em>X</em> can be approximated by the normal distribution if the following conditions are fulfilled:
Check whether the conditions satisfy or not:

The second condition is not fulfilled.
A Normal approximation to binomial cannot be applied to approximate the distribution of <em>X</em>, the number of computer crashes in a day.
Answer:
Step-by-step explanation:
5x + 15 + 2x = 24 + 4x
7x + 15 = 24 + 4x
7x - 4x = 24 - 15
3x = 9
x = 9/3
x = 3 <====
The mass of substance left after 7 days is 13.09 g
The mass of substance left, N is given by
N = N₀exp(-λt) where λ = decay constant and N₀ = initial mass of substance present = 24 g and t = time
Also, λ = 0.693/t' where t' = half-life of iodine = 8 days
So, λ = 0.693/t'
λ = 0.693/8
λ = 0.086625/day
Since the mass of substance left is N = N₀exp(-λt) and we require the mass of substance after t = 7 days,
N = N₀exp(-λt)
N = 24 gexp(-0.086625/day × 7 days)
N = 24 gexp(-0.606375)
N = 24 g × 0.5453
N = 13.09 g
So, the mass of substance left after 7 days is 13.09 g
Learn more about radioactive decay here:
brainly.com/question/23705307