Divide the change in speed by the time for the change.
F = m · a
In order to accelerate 82 kg upward at the rate of 3.2 m/s², a NET upward force of (82kg · 3.2m/s²) = 262.4 Newtons is required.
But if the object is on or near the surface of the Earth, then there's a downward force of (82kg · 9.8m/s²) = 803.6 N already acting on it because of gravity.
So you need to apply (803.6N + 262.4N) = <em>1,066 Newtons UPward</em>, in order to cancel its own weight and accelerate it upward at that rate.
Answer:
500 nm
Explanation:
In this problem, we have a diffraction pattern created by light passing through a diffraction grating.
The formula to find a maximum in the pattern produced by a diffraction grating is the following:

where:
d is the distance between the lines in the grating
is the angle at which the maximum is located
m is the order of the maximum
is the wavelength of the light used
In this problem we have:
is the angle at which is located the 2nd-order bright line, which is the 2nd maximum
n = 5000 lines/cm is the number of lines per centimetre, so the distance between two lines is

Re-arranging the equation for
, we find the wavelength of the light used:

Is the energy contained in the particles of a medium