Answer:
1317.4 m
Explanation:
We are given that
Angle=
Initial speed =
We have to find the horizontal distance covered by the shell after 5.03 s.
Horizontal component of initial speed=
Vertical component of initial speed=
Time=t=5.03 s
Horizontal distance =
Using the formula
Horizontal distance=
Horizontal distance=1317.4 m
Hence, the horizontal distance covered by the shell=1317.4 m
By definition, the momentum is given by:
p = m * v
Where,
m = mass
v = speed.
On the other hand,
F = m * a
Where,
m = mass
a = acceleration:
For the boy we have:
p1 = m * v
p1 = (F / a) * v
p1 = ((710) / (9.81)) * (0.50)
p1 = 36.19 Kg * (m / s)
For the girl we have:
p2 = m * v
p2 = (F / a) * v
p2 = ((480) / (9.81)) * (v)
p2 = 48.93 * v Kg * (m / s)
Then, we have:
p1 + p2 = 0
36.19 + 48.93 * v = 0
Clearing v:
v = - (36.19) / (48.93)
v = -0.74 m / s (negative because the velocity is in the opposite direction of the boy's)
Answer:
the girl's velocity in m / s after they push off is -0.74 m / s
Answer:

Explanation:
Given data
Mass m=1.2 g=0.0012 kg
diameter d=0.76 m
Friction Force F=3.6 N
To find
Velocity v
Solution
From the Centripetal force we know that

Where m is mass
v is velocity
r is radius
Substitute the given values to find velocity v
So

Answer:
<em>The change in momentum of the car is 3575 Kg.m/s</em>
Explanation:
<u>Impulse and Momentum</u>
The impulse (J) experienced by the object equals the change in momentum of the object (Δp).
The formula that represents the above statement is:
J = Δp
The impulse is calculated as
J = F.t
Where F is the applied force and t is the time.
The car hits a wall with a force of F=6500 N and stops in 0.55 s. Thus, the impulse is:
J = 6500 * 0.55
J = 3575 Kg.m/s
The change in momentum of the car is:

The change in momentum of the car is 3575 Kg.m/s