To find:
The equation to find the period of oscillation.
Explanation:
The period of oscillation of a pendulum is directly proportional to the square root of the length of the pendulum and inversely proportional to the square root of the acceleration due to gravity.
Thus the period of a pendulum is given by the equation,
Where L is the length of the pendulum and g is the acceleration due to gravity.
On substituting the values of the length of the pendulum and the acceleration due to gravity at the point where the period of the pendulum is being measured, the above equation yields the value of the period of the pendulum.
Final answer:
The period of oscillation of a pendulum can be calculated using the equation,
Let say for every 5 s of time interval the speed will remain constant
so it is given as
v(mi/h) 16 21 23 26 33 30 28
now we have to convert the speed into ft/s as it is given that 1 mi/h = 5280/3600 ft/s
so here we will have
v(ft/s) 23.5 30.8 33.73 38.13 48.4 44 41.1
now for each interval of 5 s we will have to find the distance cover for above interval of time
so here it will cover 1298.1 ft distance in 30 s interval of time
Answer:
12.4 m/s²
Explanation:
L = length of the simple pendulum = 53 cm = 0.53 m
n = Number of full swing cycles = 99.0
t = Total time taken = 128 s
T = Time period of the pendulum
g = magnitude of gravitational acceleration on the planet
Time period of the pendulum is given as
T = 1.3 sec
Time period of the pendulum is also given as
g = 12.4 m/s²
Charles Law
Explanation:
Step 1:
It is given that the original volume of the gas is 250 ml at 300 K temperature and 1 atmosphere pressure. We need to find the volume of the same gas when the temperature is 350 K and 1 atmosphere pressure.
Step 2:
We observe that the gas pressure is the same in both the cases while the temperature is different. So we need a law that explains the volume change of a gas when temperature is changed, without any change to the pressure.
Step 3:
Charles law provides the relationship between the gas volume and temperature, at a given pressure
Step 4:
Hence we conclude that Charles law can be used.
Answer:
The water is stored in ice sheets and as snow
Explanation:
Temperature reduces with an increase in altitudes. The standard laps rate is 6.5°C per 1,000 m gained in elevation
At very high elevations, therefore, the air is usually very cold such that when an elevation of 4,500 meters is reached at the equator, it is possible to observe snowfall and the water remain temporarily stored on the surface of the mountain as ice and snow