There will not be enough momentum from the first hill to cross another hill if he same or larger size because of the way potential energy and kinetic energy works it will not be able go as high as it could go on he fist hill.
Answer:
-7.89 * 10^(-9) C
Explanation:
Parameters given:
q1 = 2.42 nC = 2.42 * 10^(-9) C
Distance between q1 and q2 = 5.33 m
q3 = 1.0 nC = 1 * 10^(-9) C
Distance between q1 and q3 = 1.9 m
Distance between q2 and q3 = 5.33 - 1.9 = 3.43 m
The net force acting on q3 is:
F = F(q1, q3) + F(q2, q3)
F = (k*q1*q3)/1.9² + (k*q2*q3)/3.43²
F = (9 * 10^(9) * 2.42 * 10^(-9) * 1 * 10^(-9))/3.61 + (9 * 10^(9) * q2 * 1 * 10^(-9))/11.7649
F = 6.033 * 10^(-9) + 0.765*q2
If the net force is zero:
0 = 6.033 * 10^(-9) + 0.765*q2
-0.765*q2 = 6.033 * 10^(-9)
=> q2 = -[6.033 * 10^(-9)]/0.765
q2 = -7.89 * 10^(-9) C
You find yourself in a place that is unimaginably <u>hot and dense</u>. A r<u>apidly changing</u><u> gravitational field</u><u> </u>randomly warps space and time. Gripped by these huge fluctuations, you notice that there is but a single, unified force governing the universe, you are in the early universe before the Planck time.
<h3>What is Planck time?</h3>
The Planck time is approximately<u> 10^-44 seconds</u>. The smallest time interval, or "zeptosecond," that has so far been measured is <u>10^-21 seconds</u>. A photon traveling at the speed of light would need one Planck time <u>to traverse a distance of one </u><u>Planck length</u>.
<h3>What is Planck length?</h3>
Planck units are a set of measuring units used only in particle physics and physical cosmology. They are defined in terms of <u>four universal </u><u>physical constants</u> in such a way that when expressed in terms of these units, these physical constants have the numerical value 1. These units are a system of natural units because its definition is <u>based on characteristics of nature</u>, more especially the characteristics of free space, rather than a selection of prototype object, as was the case with Max Planck's original 1899 proposal. They are pertinent to the study of unifying theories like quantum gravity.
To learn more about Plank time:
brainly.com/question/23791066
#SPJ4
Answer:
An object can have a displacement in the absence of any external force acting on it
Explanation:
When a object moves with a constant velocity (v), then it gets displaced in the direction of motion but the net external force experienced by the object is zero.
F external =ma
If object moves with constant velocity, acceleration is zero.
Since, a=0 ⟹F external =0
Using s=ut+ 1/2 at ^2
⟹ Displacement s=ut (∵a=0)
Hence, an object can have a displacement in the absence of any external force acting on it
Hope this helped you:)