According to Boyle's Law, volume is inversely proportional to pressure. It means
if the volume of a gas goes up the pressure goes down and if the volume of the gas goes up the pressure goes down. When the pressure of air inside the inflated balloon is more than the atmospheric pressure outside the balloon. And also when the density inside is greater than the density outside. The molecules inside the balloon move and bang around the inner walls which produces force, which provides the pressure of an enclosed air.
The bear is white in color because it is a polar bear.
<h3>What are the color of bears?</h3>
Bears are very large carnivorous animals found around the cold regions of the Arctic or North Pole.
The color of bears, may be brown, black or white depending on how far North the bears are found.
Bears found close to the Arctic or North pole are white polar bears.
Based on the description of the house, every side of the home faces South meaning that the individual lives in the North pole.
Therefore, the color of the bear will be white.
in conclusion, polar bears are white in color.
Learn more about polar bears at: brainly.com/question/21618662
#SPJ1
Answer:
The translational kinetic energy is 225 J
The rotational kinetic energy is 225 J
Explanation:
Given;
mass of the wheel, m = 2-kg
linear speed of the wheel, v = 15 m/s
Transnational kinetic energy is calculated as;
E = ¹/₂MV²
where;
M is mass of the moving object
V is the velocity of the object
E = ¹/₂ x 2 x (15)²
E = 225 J
Rotational kinetic energy is calculated as;
E = ¹/₂Iω²
where;
I is moment of inertia
ω is angular velocity

E = ¹/₂ x 2 x (15)²
E = 225 J
Thus, the translational kinetic energy is equal to rotational kinetic energy
Answer:
A constant value everywhere in the universe.
Explanation:
The speed of light in a vacuum is a constant value. It is not affected by change in frequency or wavelength of the light.
Mathematically the speed of light is given as:
c = λf
where λ = wavelength and f - frequency
The speed of light is the constant of proportionality between frequency and wavelength. In order words, wavelength and frequency are inversely proportional. As the wavelength increases, frequency decreases and vice versa.
While the change in wavelength and frequency of light affect the energy of the light, its speed is a constant value as long as the medium is a vacuum.
The speed of light is also not dependent on the manner with which the light wave is moving.