Answer:
5. All of the answers are yes.
Explanation:
<h2><u><em>
PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>
Answer:
a=2500J,b=1000K,c=1000J,d=14.142m/s
Explanation:
V²=U²+2gh
V²=0 + 2×10×10=200m/s
a).kinetic energy=(1/2)mv²=(1/2)25×200=2500
potential energy=mgh
p.e=25×10×10=2500J
pe+ke=2500+2500=5KJ
b).mgh=25×10×4=1000J
c). V²=U²+2gh
V²=0+2×10×4
V²=80
kinetic energy=(1/2)mv²
=(1/2)25×80
=1KJ
d). From my first paragraph V²=200
V=√200
V=14.142m/s
To solve this problem it is necessary to apply the concepts related to the change of Energy in photons and the conservation of energy.
From the theory we could consider that the energy change is subject to

Where
Initial Energy
Energy loses
Replacing we have that


Therefore the Kinetic energy of the electron once it has broken free of the metal surface is 0.8eV
Answer: Electromagnetic waves (Ultraviolet light, between 100 nm and 380 nm)
Explanation:
Solar cells work by the photoelectric effect, which consists of the emission of electrons (electric current) when light (electromagnetic waves) falls on a metal surface under certain conditions.
In this sense, the portion of the electromagnetic spectrum this cells use is Ultraviolet light (UV) from the Sun, whose wavelength is approximately between 100 nm and 380 nm.
It is important to note, this is a type of electromagnetic radiation that is not visible to the human eye.