Answer:
41.5° C
Explanation:
Given data :
1025 steel
Temperature = 4°C
allowed joint space = 5.4 mm
length of rails = 11.9 m
<u>Determine the highest possible temperature </u>
coefficient of thermal expansion ( ∝ ) = 12.1 * 10^-6 /°C
Applying thermal strain ( Δl / l ) = ∝ * ΔT
( 5.4 * 10^-3 / 11.9 ) = 12.1 * 10^-6 * ( T2 - 4 )
∴ ( T2 - 4 ) = ( 5.4 * 10^-3 / 11.9 ) / 12.1 * 10^-6
hence : T2 = 41.5°C
Answer:
Explanation:
When preparing to move to a curb or side of the road you should always accelerate quickly to move ahead of traffic.
Answer:
275 MPa
Explanation:
Regardless of what it is holding, the stiffness of a bolt depends on its own material properties and geometry.
The stiffness is:

I assume this one is made of steel, because regular bolts are steel.
The Young's modulus for steel is E = 210 GPa
The longitude is given. (But note that in a real application you have to consider the length up to the nut.)
The section is (using the nominal diameter of 10 mm)

Then:

Answer:
<em>A stable ride</em>
Explanation:
A Catamaran hull is a form of sea craft invented by the Austronesian peoples, the invention of the Catamaran hull enabled these people to sail across the sea in their expansion to the islands of the Indian and Pacific Oceans. Catamaran has multiple hulls, usually two parallel hulls of equal size. This geometric feature gives the craft an increased stability because,<em> it derives extra stability from its wide beam, in the place of a ballasted keel employed in a regular monohull sailboat. </em>A Catamaran hull will require four times the force needed to capsize it, when compared to an equivalent monohull.