Material engineering studies the physical behavior of metallic elements.
Answer: Option C
<u>Explanation:
</u>
Material Engineering is the creation and learning about the materials at an atomic level. An engineers from this branch focus on material and model its characteristics using the computer.
Also, they combine the knowledge of solid-states, metallurgy, chemistry and ceramics to the application level. It also has a great role in building the future with the advancing study in nanotechnology, biotechnology, etc. Simply, these are meant to have vivid applications in future life.
Answer:
A working with machinery be a common type of caught-in and caught-between hazard is described below in complete detail.
Explanation:
“Caught in-between” accidents kill mechanics in a variety of techniques. These incorporate cave-ins and other hazards of tunneling activity; body parts extracted into unconscious machinery; reaching within the swing range of cranes and other installation material; caught between machine & fixed objects.
Answer:
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes
Explanation:
In order to find the actual heat transfer rate is lower or higher than its value we will first find the rate of heat transfer to power plant:


From First law of thermodynamics:
Rate of heat transfer to river=heat transfer to power plant-work done
Rate of heat transfer to river=2000-800
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes.
Answer:
slenderness ratio = 147.8
buckling load = 13.62 kips
Explanation:
Given data:
outside diameter is 3.50 inc
wall thickness 0.30 inc
length of column is 14 ft
E = 10,000 ksi
moment of inertia 

Area 


r = 1.136 in
slenderness ratio 

buckling load 

