1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
snow_lady [41]
3 years ago
7

A thermal energy storage unit consists of a large rectangular channel, which is well insulated on its outer surface and encloses

alternating layers of the storage material and the flow passage. Each layer of the storage material is an aluminum slab of width W=0.05 m, which is at an initial temperature of 25∘C25 ∘C. Consider conditions for which the storage unit is charged by passing a hot gas through the passages, with the gas temperature and the convection coefficient assumed to have constant values of T[infinity]=600∘CT [infinity]=600 ∘C and h=100W/m2⋅Kh=100W/m 2⋅K throughout the channel. How long will it take to achieve 75% of the maximum possible energy storage? What is the temperature of the aluminum at this time?
Engineering
1 answer:
yaroslaw [1]3 years ago
3 0

Answer:

the temperature of the aluminum at this time is 456.25° C

Explanation:

Given that:

width w of the aluminium slab = 0.05 m

the initial temperature T_1 = 25° C

T{\infty} =600^0C

h = 100 W/m²

The properties of Aluminium at temperature of 600° C by considering the conditions for which the storage unit is charged; we have ;

density ρ = 2702 kg/m³

thermal conductivity k = 231 W/m.K

Specific heat c = 1033 J/Kg.K

Let's first find the Biot Number Bi which can be expressed by the equation:

Bi = \dfrac{hL_c}{k} \\ \\ Bi = \dfrac{h \dfrac{w}{2}}{k}

Bi = \dfrac{hL_c}{k} \\ \\ Bi = \dfrac{100 \times \dfrac{0.05}{2}}{231}

Bi = \dfrac{2.5}{231}

Bi = 0.0108

The time constant value \tau_t is :

\tau_t = \dfrac{pL_cc}{h} \\ \\ \tau_t = \dfrac{p \dfrac{w}{2}c}{h}

\tau_t = \dfrac{2702* \dfrac{0.05}{2}*1033}{100}

\tau_t = \dfrac{2702* 0.025*1033}{100}

\tau_t = 697.79

Considering Lumped capacitance analysis since value for Bi is less than 1

Then;

Q= (pVc)\theta_1 [1-e^{\dfrac {-t}{ \tau_1}}]

where;

Q = -\Delta E _{st} which correlates with the change in the internal energy of the solid.

So;

Q= (pVc)\theta_1 [1-e^{\dfrac {-t}{ \tau_1}}]= -\Delta E _{st}

The maximum value for the change in the internal energy of the solid  is :

(pVc)\theta_1 = -\Delta E _{st}max

By equating the two previous equation together ; we have:

\dfrac{-\Delta E _{st}}{\Delta E _{st}{max}}= \dfrac{  (pVc)\theta_1 [1-e^{\dfrac {-t}{ \tau_1}}]} { (pVc)\theta_1}

Similarly; we need to understand that the ratio of the energy storage to the maximum possible energy storage = 0.75

Thus;

0.75=  [1-e^{\dfrac {-t}{ \tau_1}}]}

So;

0.75=  [1-e^{\dfrac {-t}{ 697.79}}]}

1-0.75=  [e^{\dfrac {-t}{ 697.79}}]}

0.25 =  e^{\dfrac {-t}{ 697.79}}

In(0.25) =  {\dfrac {-t}{ 697.79}}

-1.386294361= \dfrac{-t}{697.79}

t = 1.386294361 × 697.79

t = 967.34 s

Finally; the temperature of Aluminium is determined as follows;

\dfrac{T - T _{\infty}}{T_1-T_{\infty}}= e ^ {\dfrac{-t}{\tau_t}}

\dfrac{T - 600}{25-600}= e ^ {\dfrac{-967.34}{697.79}

\dfrac{T - 600}{25-600}= 0.25

\dfrac{T - 600}{-575}= 0.25

T - 600 = -575 × 0.25

T - 600 = -143.75

T = -143.75 + 600

T = 456.25° C

Hence; the temperature of the aluminum at this time is 456.25° C

You might be interested in
) A certain polymer is used for evacuation systems for aircraft. It is important that the polymer be resistant to the aging proc
bonufazy [111]

Answer:

it will be a scattered plot

Explanation:

5 0
2 years ago
4.2 A vapor compression refrigeration machine uses 30kW of electric power to produce 50 tons of cooling. What is
stellarik [79]

Answer:

5.833

Explanation:

Coefficient of Perfomance (COP) is the ratio of refrigeration effect to power input.

COP=\frac {RE}{P} where RE is refrigeration effect and P is power input

Here, the power input is given as 30 kW

We also know that 1 ton cooling is equivalent to 3.5 kW hence for 50 tons, RE=50*3.5=175 kW

Now the COP=\frac {175}{30}=5.833

6 0
3 years ago
Tech a says the higher the numarical gear ratio (4:1), the more torque that will be applied to the wheels. Tech b says that the
Zepler [3.9K]

Answer:

Tech A

Explanation:

The amount of energy required to apply the same force with a 1:1 ratio is divided into 4, so you can apply 4 times as much force than a 1:1 ratio. efficiency and speed come into play here, but assuming the machine powering the gear can run at a unlimited RPM, 4:1 will have more force and a slower output speed than a 2:1 ratio.

3 0
3 years ago
Read 2 more answers
When moving cylinders always remove and make
Karolina [17]

Unless cylinders are firmly secured on a special carrier intended for this purpose, regulators shall be removed and valve protection caps put in place before cylinders are moved. A suitable cylinder truck, chain, or other steadying device shall be used to keep cylinders from being knocked over while in use.

5 0
3 years ago
Water vapor at 10bar, 360°C enters a turbine operatingat steady state with a volumetric flow rate of 0.8m3/s and expandsadiabati
Artyom0805 [142]

Answer:

A) W' = 178.568 KW

B) ΔS = 2.6367 KW/k

C) η = 0.3

Explanation:

We are given;

Temperature at state 1;T1 = 360 °C

Temperature at state 2;T2 = 160 °C

Pressure at state 1;P1 = 10 bar

Pressure at State 2;P2 = 1 bar

Volumetric flow rate;V' = 0.8 m³/s

A) From table A-6 attached and by interpolation at temperature of 360°C and Pressure of 10 bar, we have;

Specific volume;v1 = 0.287322 m³/kg

Mass flow rate of water vapour at turbine is defined by the formula;

m' = V'/v1

So; m' = 0.8/0.287322

m' = 2.784 kg/s

Now, From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific enthalpy;h1 = 3179.46 KJ/kg

Now, From table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific enthalpy;h2 = 3115.32 KJ/kg

Now, since stray heat transfer is neglected at turbine, we have;

-W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2 - h1)

Plugging in relevant values, the work of the turbine is;

W' = -2.784(3115.32 - 3179.46)

W' = 178.568 KW

B) Still From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific entropy: s1 = 7.3357 KJ/Kg.k

Still from table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific entropy; s2 = 8.2828 KJ/kg.k

The amount of entropy produced is defined by;

ΔS = m'(s2 - s1)

ΔS = 2.784(8.2828 - 7.3357)

ΔS = 2.6367 KW/k

C) Still from table A-6 attached and by interpolation at state 2 with s2 = s2s = 8.2828 KJ/kg.k and Pressure of 1 bar, we have;

h2s = 2966.14 KJ/Kg

Energy equation for turbine at ideal process is defined as;

Q' - W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Again, Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2s - h1)

W' = -2.784(2966.14 - 3179.46)

W' = 593.88 KW

the isentropic turbine efficiency is defined as;

η = W_actual/W_ideal

η = 178.568/593.88 = 0.3

8 0
3 years ago
Other questions:
  • Use the convolutional integral to find the response of an LTI system with impulse response ℎ(????) and input x(????). Sketch the
    8·1 answer
  • True or false? Don't break or crush mercury-containing lamps because mercury powder may be released.
    8·1 answer
  • Water is the working fluid in an ideal Rankine cycle. Superheatedvapor enters the turbine at 10MPa, 480°C, and the condenser pre
    10·1 answer
  • An Otto cycle engine is analyzed using the air standard method. Given the conditions at state 1, compression ratio (r), and pres
    6·1 answer
  • Write analgorithm and a C code to calculate the sum and average value of an array12elements.For example: Array_Temperaure=[10, 1
    6·1 answer
  • When wasDisney Cruise Line founded
    5·1 answer
  • What are the coordinates of the centroid of this figure?
    5·1 answer
  • 3. Aqueous cleaners are
    11·1 answer
  • Hi, everyone I'm a high school student in Texas. My engineering teacher is asking us to find an active engineer to complete a li
    5·1 answer
  • What is valve overlap?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!