When calcium reacts with water, the temperature changes from 18c to 39c is an exothermic reaction as energy is releasing and increasing the temperature.
<h3>What is an exothermic reaction?</h3>
Exothermic reaction are those reactions in which energy is released when a reaction completes.
An example is burning of wood.
Thus, when calcium reacts with water, the temperature changes from 18c to 39c is an exothermic reaction as energy is releasing and increasing the temperature.
Learn more about exothermic reaction
brainly.com/question/10373907
#SPJ4
Answer:
A solution in which no more solute can be dissolved in is referred to as SATURATED. In such a solution, the concentration of solute is called SOLUBILITY . When that concentration is reported in moles per liter, it is more specifically called MOLAR SOLUBILITY. A special equilibrium constant called the SOLUBILITY PRODUCT constant is calculated from the molar concentrations of the aqueous components of the dissolution equation.
Explanation:
The solubility of a solute in a solvent is the maximum amount of solute in moles that will be dissolved in 1dm3 of the solvent at a specified temperature. Once the maximum number or concentration has been reached, the solvent can no longer take in solutes and this point in the reaction, the solution is said to be saturated. That is the composition of the saturated solution is not affected by the presence of excess solute. An unsaturated solution has a lower concentration of solute and can dissolve more solutes if added until it becomes saturated.
Solubility when reported in moles per liter is called molar solubility of the solution and it gives a more accurate measurement of yh solubility of a solution. The solubility product constant is calculated from the molar concentrations of the aqueous components of the dissolution equation. This solubility product constant explains the balance between dissolved ions from the salt and undissolved salt in a dissolution equation.
B. carbon because it's atomic number is 6
Zeff = Z - S
Here, Z is the number of protons in the nucleus, that is, atomic number, and S is the number of nonvalence electrons.
For boron, the electronic configuration is 1s₂ 2s₂ 2p₄
Z = 5, S = 2
Zeff = 5-2 = +3
For O, electronic configuration is 1s₂ 2s₂ 2p₄
Z = 8, S = 2
Zeff = 8-2 = +6
Hence, the correct answer is second option, that is, +3 and +6, the Zeff of boron is smaller in comparison to O, thus, boron exhibits a bigger size than O.