Finding percent composition is fairly easy. You only need to divide the mass of an element by the total mass of the compound. We can do this one element at a time.
First, let's find the total mass by using the masses of the elements given on the periodic table.
7 x 12.011 (mass of Carbon) = 84.077
5 x 1.008 (mass of Hydrogen) = 5.04
3 x 14.007 (mass of Nitrogen) = 42.021
6 x 15.999 (mass of Oxygen) = 95.994
Add all of those pieces together.
84.077 + 5.04 + 42.021 + 95.994 = 227.132 g/mol is your total. Since we also just found the mass of each individual element, the next step will be very easy.
Carbon: 84.077 / 227.132 = 0.37016 ≈ 37.01 %
Hydrogen: 5.04 / 227.132 = 0.022189 ≈ 2.22 %
Nitrogen: 42.021 / 227.132 = 0.185 ≈ 18.5 %
Oxygen: 95.994 / 227.132 = 0.42263 ≈ 42.26 %
You can check your work by making sure they add up to 100%. The ones I just found add up to 99.99, which is close enough. A small difference (no more than 0.03 in my experience) is just a matter of where you rounded your numbers.
Answer:
Cobalt Sources
Cobalt-60 is used as a radiation source in many common industrial applications, such as in leveling devices and thickness gauges. It is also used for radiation therapy in hospitals. Accidental exposures may occur as the result of loss or improper disposal of medical and industrial radiation sources.
Explanation:
Answer:
704.6 g CO2
Explanation:
MM sucrose = 342.3 g/mol
MM CO2 = 44.01 g/mol
g CO2 = 456.7 g sucrose x (1 mol sucrose/MM sucrose) x (12 moles CO2/1 mol sucrose) x (MM CO2/1mol CO2) = 704.6 g CO2
The job outlook for physical therapists<u> "will improve over time".</u>
Physical therapists, help harmed or sick individuals enhance their development and deal with their agony. These therapists are frequently an imperative piece of the restoration, treatment, and counteractive action of patients with unending conditions, ailments, or wounds.
Physical therapists commonly work in private workplaces and centers, clinics, patients' homes, and nursing homes. They invest quite a bit of their energy in their feet, effectively working with patients.
2Ca + O2 = 2CaO
First, determine which is the excess reactant
72.5 g Ca (1 mol) =1.8089725036
(40.078 g)
65 g O2 (1 mol) =2.0313769611
(15.999g × 2)
Since the ratio of to O2 is 2:1 in the balanced reaction, divide Ca's molar mass by 2 to get 0.9044862518. this isn't necessary because Ca is already obviously the limiting reactant. therefore, O2 is the excess reactant.
Now do the stoichiometry
72.5 g Ca (1 mol Ca) (1 mol O2)
(40.078 g Ca)(2 mol Ca)(31.998g O2)
=0.0282669621 g of O2 left over