All, or almost all, warm-blooded creatures get rid of excess heat by evaporating moisture from their bodies. It's a great system, because evaporation takes a lot of heat. That's the reason people perspire when we're active and build up a lot of heat inside. The evaporation of sweat from our skin carries away heat with it.
Dogs do not sweat on their skin. The only place they can evaporate moisture is through their mouth. Panting speeds up the evaporation by blowing air across the moisture.
The term temperature has to do with the measure of an object's "hotness".
<h3>What is temperature?</h3>
The term temperature has to do with how hot or cold a body is. In other words, the word temperature brings us to call to mind the degree of hotness or coldness of a body.
Succinctly put, the term temperature has to do with the measure of an object's "hotness".
Learn more about temperature:brainly.com/question/7510619
#SPJ1
This question involves the concepts of dynamic pressure, volume flow rate, and flow speed.
It will take "5.1 hours" to fill the pool.
First, we will use the formula for the dynamic pressure to find out the flow speed of water:

where,
v = flow speed = ?
P = Dynamic Pressure = 55 psi
= 379212 Pa
= density of water = 1000 kg/m³
Therefore,

v = 27.54 m/s
Now, we will use the formula for volume flow rate of water coming from the hose to find out the time taken by the pool to be filled:

where,
t = time to fill the pool = ?
A = Area of the mouth of hose =
= 1.98 x 10⁻⁴ m²
V = Volume of the pool = (Area of pool)(depth of pool) = A(1.524 m)
V =
= 100.1 m³
Therefore,

<u>t = 18353.5 s = 305.9 min = 5.1 hours</u>
Learn more about dynamic pressure here:
brainly.com/question/13155610?referrer=searchResults
Answer:
given,
mass of the skier = 70.1 Kg
angle with horizontal, θ = 8.6°
magnitude of the force,F = ?
a) Applying newton's second law
velocity is constant, a = 0



b) now, when acceleration, a = 0.135 m/s²
velocity is constant, a = 0.135 m/s₂



A
Excitation to a higher energy state requires energy which is absorbed from the electromagnetic waves applied.