The strength of the magnetic field is proportional to the number of turns in the solenoid; this means that the strength of the field will increase or decrease as you increase or decrease the number of turns in the coil, respectively - they are directly related.
Hope this helps!
Answer:
The critical stress required for the propagation of an initial crack
= 21.84 M pa
Explanation:
Given data
Modulus of elasticity E = 225 ×

Specific surface energy for magnesium oxide is
= 1 
Crack length (a) = 0.3 mm = 0.0003 m
Critical stress is given by
=
-------- (1)
⇒ 2 E
= 2 × 225 ×
× 1 = 450 ×
⇒
a = 3.14 × 0.0003 = 0.000942
⇒ Put these values in equation 1 we get
⇒
=
⇒
= 4.77 × 
⇒
= 2.184 ×

⇒
= 21.84 
⇒
= 21.84 M pa
This is the critical stress required for the propagation of an initial crack.
I think the answer could be that it could result in resonance.
There is not much to go from in this question. Specify whether the are on the same wave length or on separate.
If the 2 waves are on the same wave length and going towards each other with the same amplitude, that would result in them colliding and forming a larger amplitude, or something called constructive interference.
I hope this helps you!
Answer:
8.42Joules
Explanation:
The rotational kinetic energy, denoted by E(rotational), can be calculated using the formula:
E(rotational) = 1/2 × I × ω²
Where;
I = moment of inertia (kgm²)
ω = angular velocity (rad/s)
However, we need to calculate the moment of inertia in this question by using the formula:
I = m × r²
Where;
m = mass (1.3kg)
r = radius (0.6m)
I = 1.3 × 0.6²
I = 1.3 × 0.36
I = 0.468 kgm²
Since I = 0.468 kgm², ω = 6 rad/s, we can calculate rational kinetic energy using:
K.E(rotational) = 1/2 × I × ω²
K.E(rotational) = 1/2 × 0.468 × 6²
K.E(rotational) =1/2 × 0.468 × 36
K.E(rotational) = 18 × 0.468
K.E(rotational) = 8.424
K.E(rotational) = 8.42Joules