Answer:
Given:
Initial velocity (u) = 30 m/s
Final speed (v) = 0 m/s
Acceleration (a) = - 1.5 m/,s²
To Find:
Time in which train will come to rest (t).
Explanation:
So,
Time in which train will come to rest = 20 seconds
Answer:
0.06 N
1.08 m/s
Explanation:
m = mass of the fan cart = 0.250 kg
a = acceleration of the fan cart = 24 cm/s² = 0.24 m/s²
F = Net force on the cart
Net force on the cart is given as
F = ma
F = (0.250) (0.24)
F = 0.06 N
v₀ = initial velocity of the cart = 0 m/s
v = final velocity of the cart
t = time interval = 4.5 s
Using the equation
v = v₀ + a t
v = 0 + (0.24) (4.5)
v = 1.08 m/s
Answer: 0.01 m
Explanation: The formulae for capillarity rise or fall is given below as
h = (2T×cosθ)/rpg
Where θ = angle mercury made with glass = 50°
T = surface tension = 0.51 N/m
g = acceleration due gravity = 9.8 m/s²
r = radius of tube = 0.5mm = 0.0005m
p = density of mercury.
h = height of rise or fall
From the question, specific gravity of density = 13.3
Where specific gravity = density of mercury/ density of water, where density of water = 1000 kg/m³
Hence density of mercury = 13.3×1000 = 13,300 kg/m³.
By substituting parameters, we have that
h = 2×0.51×cos 50/0.0005×9.8×13,300
h = 0.6556/65.17
h = 0.01 m
Given :
A 120 kg box is on the verge of slipping down an inclined plane with an angle of inclination of 47º.
To Find :
The coefficient of static friction between the box and the plane.
Solution :
Vertical component of force :
Horizontal component of force(Normal reaction) :
Since, box is on the verge of slipping :
Therefore, the coefficient of static friction between the box and the plane is 1.07.
Hence, this is the required solution.
600
mph
Velocity is the distance traveled in a given time, or
v
=
x
t
where
v
is velocity,
x
is distance and
t
is time.
Here,
x
=
3000
and
t
=
5.0
, so
v
=
x
t
=
3000
5
=
600
Don't forget units. Since the question's data is in miles and hours, the units will be miles per hour, or mph, so
3000
miles
5
hours
=
600
miles
hour
=
600
mph