Answer:
2.80N/m
Explanation:
Given data
mass m= 56kg
perios T= 11.2s
The expression for the period is given as
T=2π√m/k
Substitute
11.2= 2*3.142*√56/k
square both sides
11.2^2= 2*3.142*56/k
125.44= 351.904/k
k=351.904/125.44
k= 2.80N/m
Hence the spring constant is 2.80N/m
The Sun's magnetic field goes through a cycle, called the solar cycle. Every 11 years or so, the Sun's magnetic field completely flips. This means that the Sun's north and south poles switch places. Then it takes about another 11 years for the Sun's north and south poles to flip back again.
(a) The net force on the shopping cart is zero.
(b) The the force of friction on the shopping cart is 25 N.
(c) When same force is applied to the shopping cart on a wet surface, it will move faster.
<h3>Net force on the shopping cart</h3>
The net force on the shopping cart is calculated as follows;
F(net) = F - Ff
where;
- F is the applied force
- Ff is the frictional force
ma = F - Ff
where;
- a is acceleration of the cart
- m is mass of the cart
at a constant velocity, a = 0
0 = F - Ff
F(net) = 0
F = Ff = 25 N
Net force is zero, and frictional force is equal to applied force.
<h3>On wet surface</h3>
Coefficient of kinetic friction of solid surface is greater than that of wet surface.
Since frictional force limit motion, when the frictional force is smaller, the object tends to move faster.
Thus, the cart will move faster on a wet surface due to decrease in friction.
Learn more about frictional force here: brainly.com/question/24386803
#SPJ1
Answer:
B
Explanation:
Wave length is the height perpendicular verically of a wave
Let us examine the given situations one at a time.
Case a. A 200-pound barbell is held over your head.
The barbell is in static equilibrium because it is not moving.
Answer: STATIC EQUILIBRIUM
Case b. A girder is being lifted at a constant speed by a crane.
The girder is moving, but not accelerating. It is in dynamic equilibrium.
Answer: DYNAMIC EQUILIBRIUM
Case c: A jet plane has reached its cruising speed at an altitude.
The plane is moving at cruising speed, but not accelerating. It is in dynamic equilibrium.
Answer: DYNAMIC EQUILIBRIUM
Case d: A box in the back of a truck doesn't slide as the truck stops.
The box does not slide because the frictional force between the box and the floor of the truck balances out the inertial force. The box is in static equilibrium.
Answer: STATIC EQUILIBRIUM