The power delivered is equal to the product between the voltage V and the current I:

This power is delivered for a total time of

, so the total energy delivered to the battery is
<span>Here I think you have to find the velocity in x and y components where x is east and y is north
So as air speed indicator shows the negative speed in y component and adding it in
air speed while multiplying with the direction component we will get the velocity as velocity is a vector quantity so direction is also required
v=-28 m/s y + 18 m/s (- x/sqrt(2) - y/sqrt(2))
solving
v= -12.7 m/s x-40.7 m/s y
if magnitude of velocity or speed is required then
speed= sqrt(12.7^2 + 40.7^2)
speed= 42.63 m/s
if angle is asked
angle = arctan (40.7/12.7)
angle = 72.67 degrees south of west</span>
I believe the answer would be c because i think that you multiply the 2
Answer:
the velocity of the bullet-wood system after the collision is 2.48 m/s
Explanation:
Given;
mass of the bullet, m₀ = 20 g = 0.02 kg
velocity of the bullet, v₀ = 250 m/s
mass of the wood, m₁ = 2 kg
velocity of the wood, v₁ = 0
Let the velocity of the bullet-wood system after collision = v
Apply the principle of conservation of linear momentum to calculate the final velocity of the system;
Initial momentum = final momentum
m₀v₀ + m₁v₁ = v(m₀ + m₁)
0.02 x 250 + 2 x 0 = v(2 + 0.02)
5 + 0 = v(2.02)
5 = 2.02v
v = 5/2.02
v = 2.48 m/s
Therefore, the velocity of the bullet-wood system after the collision is 2.48 m/s
The answer is that FRICTION PRODUCES HEAT.