If your machine has a mechanical advantage of 2.5, then WHATEVER force you apply to the input, the force at the output will be 2.5 times as great.
If you apply 1 newton to the machine's input, the output force is
(2.5 x 1 newton) = 2.5 newtons.
If you apply 120 newtons to the machine's input, the output force is
(2.5 x 120 newtons) = 300 newtons.
<span>According to the concept of punctuated equilibrium, </span>new species evolve suddenly over relatively short periods of time (a few hundred to a thousand years), followed by longer periods in which little genetic change occurs. Hope this helps. Have a nice day.
Answer : The final pressure of the system in atm is, 3.64 atm
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

or,

where,
= first pressure = 8.19 atm
= second pressure = 2.65 atm
= first volume = 2.14 L
= second volume = 9.84 L
= final pressure = ?
= final volume = 2.14 L + 9.84 L = 11.98 L
Now put all the given values in the above equation, we get:


Therefore, the final pressure of the system in atm is, 3.64 atm
Answer:
354.72 m/s
Explanation:
= mass of lead bullet
= specific heat of lead = 128 J/(kg °C)
= Latent heat of fusion of lead = 24500 J/kg
= initial temperature = 27.4 °C
= final temperature = melting point of lead = 327.5 °C
= Speed of lead bullet
Using conservation of energy
Kinetic energy of bullet = Heat required for change of temperature + Heat of melting

Earth is 150 million kilometers away for the sun