Hi,
Homogeneous mixture 2
Heterogeneous 3
Mixture 1
Solution 5
Compound 4
In a neutral atom they are both equal, and their even quantities makes the atom neutral...
Answer:
C. P = nRT
Explanation:
PV = nRT, where n is a number of moles and R is the universal gas constant, R = 8.31 J/mol ⋅ K.
Hope this helps :)
<u>Answer:</u> The correct answer is Option b.
<u>Explanation:</u>
To calculate the amount of heat absorbed or released, we use the following equation:
.....(1)
where, q = amount of heat absorbed or released.
m = mass of the substance
c = heat capacity of water = 4.186 J/g ° C
= Change in temperature
We are given:
![m=30g\\\Delta T=[40-0]^oC=40^oC\\q=?J](https://tex.z-dn.net/?f=m%3D30g%5C%5C%5CDelta%20T%3D%5B40-0%5D%5EoC%3D40%5EoC%5C%5Cq%3D%3FJ)
Putting values in equation 1, we get:

q = 5023.2 J
We are given:
![m=40g\\\Delta T=[40-30]^oC=10^oC\\q=?J](https://tex.z-dn.net/?f=m%3D40g%5C%5C%5CDelta%20T%3D%5B40-30%5D%5EoC%3D10%5EoC%5C%5Cq%3D%3FJ)
Putting values in equation 1, we get:

q = 1674.4 J
Heat gained by Trial 1 than trial 2 = 
Hence, the amount of heat gained in Trial 1 about 3347 J more than the heat released in Trial 2.
Thus, the correct answer is Option b.
Answer:
length of wire = 38.82 m
Explanation:
∴ 16 gauge ≡ 0.05082 in * ( 2.54 cm/in ) = 0.12908 cm
∴ m spool = 1 Lb = 453.592 g
∴ ρ = 8.92 g/cm³
cross section area:
⇒ A = π*D²/4 = π*(0.12908)²/4 = 0.0131 cm²
⇒ L = ((453.592 g) *(cm³/8.92 g)) / ( 0.0131 cm² )
⇒ L = 3881.765 cm * ( m/100cm) = 38.82 m